跳转至内容
Merck
  • Gene-expression profiling elucidates molecular signaling networks that can be therapeutically targeted in vestibular schwannoma.

Gene-expression profiling elucidates molecular signaling networks that can be therapeutically targeted in vestibular schwannoma.

Journal of neurosurgery (2014-09-24)
Sameer Agnihotri, Isabel Gugel, Marc Remke, Antje Bornemann, Georgios Pantazis, Stephen C Mack, David Shih, Sanjay K Singh, Nesrin Sabha, Michael D Taylor, Marcos Tatagiba, Gelareh Zadeh, Boris Krischek
摘要

Vestibular schwannomas (VS) are common benign tumors of the vestibular nerve that cause significant morbidity. The current treatment strategies for VS include surgery or radiation, with each treatment option having associated complications and side effects. The transcriptional landscape of schwannoma remains largely unknown. In this study the authors performed gene-expression profiling of 49 schwannomas and 7 normal control vestibular nerves to identify tumor-specific gene-expression patterns. They also interrogated whether schwannomas comprise several molecular subtypes using several transcription-based clustering strategies. The authors also performed in vitro experiments testing therapeutic inhibitors of over-activated pathways in a schwannoma cell line, namely the PI3K/AKT/mTOR pathway. The authors identified over 4000 differentially expressed genes between controls and schwannomas with network analysis, uncovering proliferation and anti-apoptotic pathways previously not implicated in VS. Furthermore, using several distinct clustering technologies, they could not reproducibly identify distinct VS subtypes or significant differences between sporadic and germline NF2-associated schwannomas, suggesting that they are highly similar entities. The authors identified overexpression of PI3K/AKT/mTOR signaling networks in their gene-expression study and evaluated this pathway for therapeutic targeting. Testing the compounds BEZ235 and PKI-587, both novel dual inhibitors of PI3K and mTOR, attenuated tumor growth in a preclinical cell line model of schwannoma (HEI-293). In vitro findings demonstrated that pharmacological inhibition of the PI3K/AKT/mTOR pathway with next-generation compounds led to decreased cell viability and increased cell death. These findings implicate aberrant activation of the PI3K/AKT/mTOR pathway as a molecular mechanism of pathogenesis in VS and suggest inhibition of this pathway as a potential treatment strategy.

材料
货号
品牌
产品描述

Sigma-Aldrich
甘油, ACS reagent, ≥99.5%
Sigma-Aldrich
甘油, for molecular biology, ≥99.0%
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
甘油, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
氟化钠, ACS reagent, ≥99%
Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
乙二醇-双(2-氨基乙醚)-N,N,N′,N′-四乙酸, for molecular biology, ≥97.0%
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
甘油 溶液, 83.5-89.5% (T)
Sigma-Aldrich
HEPES缓冲溶液, 1 M in H2O
Sigma-Aldrich
甘油, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
甘油, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
甘油, puriss., anhydrous, 99.0-101.0% (alkalimetric)
SAFC
HEPES
Sigma-Aldrich
氯化钠, JIS special grade, ≥99.5%
Sigma-Aldrich
氯化钠 溶液, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
USP
甘油, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Sigma-Aldrich
氯化钠, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
甘油, ≥99.5%
Sigma-Aldrich
甘油, FCC, FG
Sigma-Aldrich
甘油, puriss. p.a., ACS reagent, anhydrous, dist., ≥99.5% (GC)
Sigma-Aldrich
氟化钠, ReagentPlus®, ≥99%
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)