跳转至内容
Merck
  • Application of various methods for removal of polycyclic aromatic hydrocarbons from synthetic solid matrices.

Application of various methods for removal of polycyclic aromatic hydrocarbons from synthetic solid matrices.

Environmental technology (2014-06-25)
Gizem Karaca, Yücel Tasdemir
摘要

In the present study, removal of polycyclic aromatic hydrocarbons (PAHs) from synthetic solid matrices with various methods was investigated. PAH removal experiments were conducted in a specifically designed UV apparatus for this study. Polyurethane foams (PUF) cartridges were used to remove PAHs from the incoming air and to capture PAHs from the evaporated gases. Sodium sulphate (Na2SO4) was used as a synthetic solid matrices. The effects of temperature, UV radiation, titanium dioxide (TiO2) and diethylamine (DEA) dose on the PAH removal were determined. TiO2and DEA were added to the Na2SO4 sample at the rate of 5% and 20% of dry weight of samples. PAHs' removal from the Na2SO4 enhanced with increasing temperature. Sigma12 PAH content in the Na2SO4 reduced up to 95% during UV light application. Moreover, the Sigma12 PAH removal ratio was calculated as 95% with using 5% of TiO2, and increasing of TiO2 dose negatively affected PAH removal. PAH concentration in the samples decreased by 93% and 99% with addition of 5% and 20% DEA, respectively. Especially, 3- and 4-ring PAH compounds evaporated during the PAH removal applications. As expected, evaporation mechanism became more effective at high temperature for light PAH compounds. It was concluded that PAHs can successfully be removed from synthetic solid matrices such as Na2 SO4 with the applications of UV light and UV-photocatalysts.

材料
货号
品牌
产品描述

Sigma-Aldrich
硫酸钠, ACS reagent, ≥99.0%, anhydrous, granular
Sigma-Aldrich
硫酸钠, ACS reagent, ≥99.0%, anhydrous, powder
Sigma-Aldrich
氧化钛(IV), nanopowder, 21 nm primary particle size (TEM), ≥99.5% trace metals basis
Sigma-Aldrich
酸式硫酸钠, technical grade
Sigma-Aldrich
硫酸钠, ReagentPlus®, ≥99.0%
Sigma-Aldrich
氧化钛 (IV),锐钛矿, nanopowder, <25 nm particle size, 99.7% trace metals basis
Sigma-Aldrich
硫酸钠, puriss., meets analytical specification of Ph. Eur., BP, USP, anhydrous, 99.0-100.5% (calc. to the dried substance)
Sigma-Aldrich
氧化钛(IV), puriss., meets analytical specification of Ph. Eur., BP, USP, 99-100.5%
Sigma-Aldrich
硫酸钠, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99%
Sigma-Aldrich
氧化钛 (IV),锐钛矿, powder, 99.8% trace metals basis
Sigma-Aldrich
硫酸氢钠 一水合物, ReagentPlus®, 99%
Sigma-Aldrich
氧化钛(IV), ReagentPlus®, ≥99%
Sigma-Aldrich
硫酸钠 十水合物, ACS reagent, ≥99.0%
Sigma-Aldrich
钛 (IV) 氧化物,金红石型, powder, <5 μm, ≥99.9% trace metals basis
Sigma-Aldrich
氧化钛 (IV),锐钛矿, powder, −325 mesh, ≥99% trace metals basis
Sigma-Aldrich
钛 (IV) 氧化物,金红石型, nanopowder, <100 nm particle size, 99.5% trace metals basis
Sigma-Aldrich
氧化钛(IV),金红石和锐钛矿混合物, nanopowder, <100 nm particle size (BET), 99.5% trace metals basis
Sigma-Aldrich
钛, foil, thickness 0.127 mm, 99.7% trace metals basis
Sigma-Aldrich
二乙胺, ≥99.5%
Sigma-Aldrich
硫酸钠 十水合物, reagent grade, 97%
Sigma-Aldrich
钛, powder, <45 μm avg. part. size, 99.98% trace metals basis
Sigma-Aldrich
钛, foil, thickness 0.25 mm, 99.7% trace metals basis
Sigma-Aldrich
氧化钛(IV),金红石和锐钛矿混合物, nanoparticles, <150 nm particle size (volume distribution, DLS), dispersion, 40 wt. % in H2O, 99.5% trace metals basis
Sigma-Aldrich
硫酸氢钠 一水合物, puriss. p.a., ≥99.0% (T)
Sigma-Aldrich
硫酸钠, ≥99.99% trace metals basis
Sigma-Aldrich
硫酸钠 十水合物, puriss. p.a., crystallized, ≥99.0% (calc. based on dry substance, T)
Sigma-Aldrich
二乙胺, purified by redistillation, 99.5%
Sigma-Aldrich
硫酸钠, BioUltra, anhydrous, ≥99.0% (T)
Sigma-Aldrich
硫酸钠, JIS special grade, ≥99.0%
Sigma-Aldrich
二乙胺 盐酸盐, ReagentPlus®, 99%