跳转至内容
Merck
  • Mutually exclusive substrate selection strategy by human m3C RNA transferases METTL2A and METTL6.

Mutually exclusive substrate selection strategy by human m3C RNA transferases METTL2A and METTL6.

Nucleic acids research (2021-07-17)
Xue-Ling Mao, Zi-Han Li, Meng-Han Huang, Jin-Tao Wang, Jing-Bo Zhou, Qing-Run Li, Hong Xu, Xi-Jin Wang, Xiao-Long Zhou
摘要

tRNAs harbor the most diverse posttranscriptional modifications. The 3-methylcytidine (m3C) is widely distributed at position C32 (m3C32) of eukaryotic tRNAThr and tRNASer species. m3C32 is decorated by the single methyltransferase Trm140 in budding yeasts; however, two (Trm140 and Trm141 in fission yeasts) or three enzymes (METTL2A, METTL2B and METTL6 in mammals) are involved in its biogenesis. The rationale for the existence of multiple m3C32 methyltransferases and their substrate discrimination mechanism is hitherto unknown. Here, we revealed that both METTL2A and METTL2B are expressed in vivo. We purified human METTL2A, METTL2B, and METTL6 to high homogeneity. We successfully reconstituted m3C32 modification activity for tRNAThr by METT2A and for tRNASer(GCU) by METTL6, assisted by seryl-tRNA synthetase (SerRS) in vitro. Compared with METTL2A, METTL2B exhibited dramatically lower activity in vitro. Both G35 and t6A at position 37 (t6A37) are necessary but insufficient prerequisites for tRNAThr m3C32 formation, while the anticodon loop and the long variable arm, but not t6A37, are key determinants for tRNASer(GCU) m3C32 biogenesis, likely being recognized synergistically by METTL6 and SerRS, respectively. Finally, we proposed a mutually exclusive substrate selection model to ensure correct discrimination among multiple tRNAs by multiple m3C32 methyltransferases.

材料
货号
品牌
产品描述

Millipore
抗-FLAG® 兔抗, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
抗-GAPDH抗体,小鼠单克隆 小鼠抗, clone GAPDH-71.1, purified from hybridoma cell culture
Sigma-Aldrich
Anti-c-Myc抗体,小鼠单克隆 小鼠抗, clone 9E10, purified from hybridoma cell culture