推荐产品
化驗
95%
包含
100 ppm hydroquinone monomethyl ether as inhibitor
300 ppm butylated hydroxytoluene as inhibitor
折射率
n20/D 1.44 (lit.)
bp
98 °C/3.5 mmHg (lit.)
密度
1.02 g/mL at 25 °C (lit.)
儲存溫度
2-8°C
SMILES 字串
COCCOCCOC(=O)C(C)=C
InChI
1S/C9H16O4/c1-8(2)9(10)13-7-6-12-5-4-11-3/h1,4-7H2,2-3H3
InChI 密鑰
DAVVKEZTUOGEAK-UHFFFAOYSA-N
應用
- Tunable Cell-Adhesive Surfaces by Surface-Initiated Photoinduced Electron-Transfer-Reversible Addition-Fragmentation Chain-Transfer Polymerization.: This research utilizes Di(ethylene glycol) methyl ether methacrylate in the development of tunable cell-adhesive surfaces, crucial for biomedical applications such as tissue engineering and medical device manufacturing, due to its capacity for precise surface chemistry modifications (Kuzmyn et al., 2024).
- Temperature-Responsive Aldehyde Hydrogels with Injectable, Self-Healing, and Tunable Mechanical Properties.: This study demonstrates the use of Di(ethylene glycol) methyl ether methacrylate in creating temperature-responsive hydrogels, offering significant potential in medical device applications for minimally invasive surgical technologies and drug delivery systems (Zhao et al., 2022).
- Investigation of the Thermogelation of a Promising Biocompatible ABC Triblock Terpolymer and Its Comparison with Pluronic F127.: Highlighting its application in pharmaceutical formulations, this research explores the thermogelation properties of polymers including Di(ethylene glycol) methyl ether methacrylate, important for developing controlled drug release systems (Constantinou et al., 2022).
- Fabrication and Impact of Fouling-Reducing Temperature-Responsive POEGMA Coatings with Embedded CaCO(3) Nanoparticles on Different Cell Lines.: The study employs Di(ethylene glycol) methyl ether methacrylate in developing advanced coatings for biomedical devices, aiming to reduce fouling and enhance device longevity and functionality in clinical settings (Lishchynskyi et al., 2021).
- Nonionic UCST-LCST Diblock Copolymers with Tunable Thermoresponsiveness Synthesized via PhotoRAFT Polymerization.: This article presents the synthesis of unique block copolymers incorporating Di(ethylene glycol) methyl ether methacrylate, which are valuable in creating smart materials for dynamic biomedical and industrial applications (Xu & Abetz, 2021).
訊號詞
Warning
危險分類
Eye Irrit. 2 - Skin Irrit. 2 - Skin Sens. 1 - STOT SE 3
標靶器官
Respiratory system
儲存類別代碼
10 - Combustible liquids
水污染物質分類(WGK)
WGK 3
閃點(°F)
235.4 °F - closed cup
閃點(°C)
113 °C - closed cup
個人防護裝備
Eyeshields, Faceshields, Gloves, type ABEK (EN14387) respirator filter
其他客户在看
Polymers, 12(11) (2020-10-30)
Novel temperature/reduction dual stimulus-responsive triblock copolymers, poly [2-(2-methoxyethoxy) ethyl methacrylate-co-oligo (ethylene glycol) methacrylate]-b-(L-polylactic acid)-SS-b-(L-polylactic acid)-b-poly[2-(2-methoxyethoxy) ethyl methacrylate-co-oligo(ethylene glycol)methacrylate] [P(MEO2MA-co-OEGMA)-b-PLLA-SS-PLLA-b-P(MEO2MA-co-OEGMA)] (SPMO), were synthesized by ring opening polymerization (ROP) of L-lactide and 2,2'-dithio diethanol (SS-DOH), and random copolymerization of MEO2MA and OEGMA
Carbohydrate polymers, 221, 84-93 (2019-06-23)
In this study, we report a novel pH and temperature responsive paclitaxel-loaded drug delivery system based on chitosan and di(ethylene glycol) methyl ether methacrylate. This was functionalized with hyaluronic acid to permit active targeting of CD44-overexpressing human breast cancer cells.
Nature communications, 9(1), 2395-2395 (2018-06-21)
Skeletal muscle provides inspiration on how to achieve reversible, macroscopic, anisotropic motion in soft materials. Here we report on the bottom-up design of macroscopic tubes that exhibit anisotropic actuation driven by a thermal stimulus. The tube is built from a
Polymers, 12(8) (2020-07-30)
A series of copolymers of di(ethylene glycol) methyl ether methacrylate (D) and 2-aminoethyl methacrylate (A) (P(D-co-A)) with variable ratios of comonomers were synthesized using atom transfer radical polymerization. Then, the amino groups of obtained copolymers were modified to clickable azide
Nanotechnology, 31(47), 475711-475711 (2020-09-12)
Smart chromic elastomers exhibiting multistimuli responsiveness are of interest with regard to the development of sensors, optical data storage, and smart wearable devices. We report a new design of Cu nanoclusters (Cu NCs) containing polymeric elastomer film, showing reversible fluorescence
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系技术服务部门