跳转至内容
Merck

409510

Sigma-Aldrich

聚乙二醇二甲基丙烯酸酯

average MN 550, cross-linking reagent polymerization reactions, methacrylate, 80-120 ppm MEHQ as inhibitor, 270-330 ppm BHT as inhibitor

别名:

PEG 二甲基丙烯酸酯

登录查看公司和协议定价


About This Item

线性分子式:
C3H5C(O)(OCH2CH2)nOC(O)C3H5
CAS号:
MDL號碼:
分類程式碼代碼:
12162002
PubChem物質ID:
NACRES:
NA.23

产品名称

聚乙二醇二甲基丙烯酸酯, average Mn 550, contains 80-120 ppm MEHQ as inhibitor, 270-330 ppm BHT as inhibitor

形狀

liquid

品質等級

分子量

average Mn 550

包含

270-330 ppm BHT as inhibitor
80-120 ppm MEHQ as inhibitor

反應適用性

reagent type: cross-linking reagent
reaction type: Polymerization Reactions

折射率

n20/D 1.466

bp

>200 °C/2 mmHg (lit.)

密度

1.099 g/mL at 25 °C

Ω-end

methacrylate

α-end

methacrylate

聚合物結構

shape: linear
functionality: homobifunctional

儲存溫度

2-8°C

SMILES 字串

OCCO.CC(=C)C(O)=O

InChI

1S/C10H14O4/c1-7(2)9(11)13-5-6-14-10(12)8(3)4/h1,3,5-6H2,2,4H3

InChI 密鑰

STVZJERGLQHEKB-UHFFFAOYSA-N

正在寻找类似产品? 访问 产品对比指南

應用


  • 负载PDGF-AA的光交联壳聚糖水凝胶可促进伤口愈合。:本研究考察了与聚乙二醇二甲基丙烯酸酯(PEGDMA)光交联的壳聚糖水凝胶递送PDGF-AA并促进伤口愈合的作用。结果表明,伤口闭合率和组织再生情况显著改善(Cai et al., 2024)。

  • 光接枝两性离子水凝胶涂层减少人工耳蜗及其材料在体内的异物反应。:本研究探讨了PEGDMA在两性离子水凝胶涂层中的应用,最大限度地减少人工耳蜗的异物反应。涂层显著减少了炎症,提高了体内的生物相容性(Horne et al., 2023)。

  • 基于实验和响应面法的全因子设计可用于评估光固化PEDMA基支架单轴压缩机械性能和生物相容性的变化。:本研究采用全因子设计优化PEDMA基支架的机械性能和生物相容性,重点介绍了其在组织工程和再生医学中的潜在应用(Bharadwaz et al., 2023)。

  • 光接枝两性离子水凝胶薄膜涂层的防污性能和机械性能取决于交联密度。:本文研究了PEDMA基水凝胶涂层交联密度的变化对其防污性能和机械性能的影响。这些发现对耐用且生物相容性医疗器械涂层的开发具有重要意义(Jensen et al., 2021)。

  • 生物相容性和光交联性聚乙二醇/角蛋白生物复合水凝胶。:该研究介绍了PEGDMA/角蛋白生物复合水凝胶的发展,展示了优异的生物相容性以及在药物递送系统和组织工程中的应用前景(Wang et al., 2021)。

儲存類別代碼

10 - Combustible liquids

水污染物質分類(WGK)

WGK 1

閃點(°F)

Not applicable

閃點(°C)

Not applicable


历史批次信息供参考:

分析证书(COA)

Lot/Batch Number

没有发现合适的版本?

如果您需要特殊版本,可通过批号或批次号查找具体证书。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Laura Ferlauto et al.
Frontiers in neuroscience, 12, 648-648 (2018-10-05)
Reducing the mechanical mismatch between the stiffness of a neural implant and the softness of the neural tissue is still an open challenge in neuroprosthetics. The emergence of conductive hydrogels in the last few years has considerably widened the spectrum
Hiroaki Onoe et al.
Nature materials, 12(6), 584-590 (2013-04-02)
Artificial reconstruction of fibre-shaped cellular constructs could greatly contribute to tissue assembly in vitro. Here we show that, by using a microfluidic device with double-coaxial laminar flow, metre-long core-shell hydrogel microfibres encapsulating ECM proteins and differentiated cells or somatic stem
Kenneth C Koehler et al.
Biomaterials, 34(16), 4150-4158 (2013-03-08)
We report a new approach to controlled drug release based upon exploiting the dynamic equilibrium that exists between Diels-Alder reactants and products, demonstrating the release of a furan containing dexamethasone peptide (dex-KGPQG-furan) from a maleimide containing hydrogel. Using a reaction-diffusion
Craig Halberstadt et al.
Methods in molecular biology (Clifton, N.J.), 1001, 279-287 (2013-03-16)
Delivery of cells to organs has primarily relied on formulating the cells in a nonviscous liquid carrier. We have developed a methodology to isolate selected renal cells (SRC) that have provided functional stability to damaged kidneys in preclinical models (Kelley
Katarzyna Kotynia et al.
Polimery w medycynie, 43(1), 21-28 (2013-07-03)
PURPOSE OF JOB: Currently, there isa need to increase comfort and visual acuity man. Simultaneously improving biocompatibility and minimizing the impact of the material on the physiology of the cornea is the primary driving force behind the evolution of materials

商品

Scaffold patterning with poly(ethylene glycol)-based hydrogels for cell presence in 2D and 3D environments on photoactive substrates.

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

Designing biomaterial scaffolds mimicking complex living tissue structures is crucial for tissue engineering and regenerative medicine advancements.

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系客户支持