推荐产品
储存分类代码
13 - Non Combustible Solids
WGK
WGK 3
闪点(°F)
Not applicable
闪点(°C)
Not applicable
历史批次信息供参考:
分析证书(COA)
Lot/Batch Number
其他客户在看
T T Luong et al.
European journal of pharmacology, 208(3), 213-221 (1991-11-13)
Inositol 1,4,5-trisphosphate (InsP3) serves as a second messenger for Ca2+ mobilization in a wide variety of cells. InsP3 activates a specific receptor/channel located on an internal Ca2+ store. Because heparin has already been shown to block the action of InsP3
Toshiaki Hattori et al.
Analytical sciences : the international journal of the Japan Society for Analytical Chemistry, 24(4), 543-546 (2008-04-12)
Polyion complexes of three chitosans with poly(vinyl sulfate) (PVS) and dodecylbenzene sulfonate (DBS) were examined by a potentiometric study that was to separately measure the pH of sample solutions individually prepared. Apparent formation constants (Ki) of ion association between the
Yasuo Yoshioka et al.
Biochimica et biophysica acta, 1624(1-3), 54-59 (2003-12-04)
We previously reported the development of a "cytomedicine" that consists of cells trapped in alginate-poly-L-lysine-alginate (APA) microcapsules and agarose microbeads. The functional cells that are entrapped in semipermeable polymer are completely isolated from cellular immune system. However, the ability of
E Holler et al.
European journal of biochemistry, 206(1), 1-6 (1992-05-15)
Poly(L-malate) is an unusual polyanion found in nuclei of plasmodia of Physarum polycephalum. We have investigated, by enzymatic and fluorimetric methods, whether poly(L-malate) and structurally related polyanions can interact with DNA-polymerase-alpha-primase complex and with histones of P. polycephalum. Poly(L-malate) is
E Sedlák et al.
Biopolymers, 46(3), 145-154 (1998-08-12)
The properties of the complexes of ferricytochrome c with two different polyanions--poly(vinylsulfate) and poly(4-styrene-sulfonate)--with a comparable charge density but with the different size of the uncharged part of their molecules have been studied by means of optical spectroscopy, differential scanning
商品
Recently, layer-by-layer (LbL) assembly has emerged as a versatile, gentle and, simple method for immobilization of functional molecules in an easily controllable thin film morphology.1,2 In this short review, we introduce recent advances in functional systems fabricated by using the mild, yet adaptable LbL technique.
We present an article that discusses two applications in particular; first, using these layers as polyelectrolyte membranes to control permeability.
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持