Accéder au contenu
Merck
  • Genetic mutations in adipose triglyceride lipase and myocardial up-regulation of peroxisome proliferated activated receptor-γ in patients with triglyceride deposit cardiomyovasculopathy.

Genetic mutations in adipose triglyceride lipase and myocardial up-regulation of peroxisome proliferated activated receptor-γ in patients with triglyceride deposit cardiomyovasculopathy.

Biochemical and biophysical research communications (2013-12-18)
Ken-ichi Hirano, Tatsuya Tanaka, Yoshihiko Ikeda, Satoshi Yamaguchi, Nobuhiro Zaima, Kazuhiro Kobayashi, Akira Suzuki, Yasuhiko Sakata, Yasushi Sakata, Kunihisa Kobayashi, Tatsushi Toda, Norihide Fukushima, Hatsue Ishibashi-Ueda, Daniela Tavian, Hironori Nagasaka, Shu-Ping Hui, Hitoshi Chiba, Yoshiki Sawa, Masatsugu Hori
RÉSUMÉ

Adipose triglyceride lipase (ATGL, also known as PNPLA2) is an essential molecule for hydrolysis of intracellular triglyceride (TG). Genetic ATGL deficiency is a rare multi-systemic neutral lipid storage disease. Information regarding its clinical profile and pathophysiology, particularly for cardiac involvement, is still very limited. A previous middle-aged ATGL-deficient patient in our institute (Case 1) with severe heart failure required cardiac transplantation (CTx) and exhibited a novel phenotype, "Triglyceride deposit cardiomyovasculopathy (TGCV)". Here, we tried to elucidate molecular mechanism underlying TGCV. The subjects were two cases with TGCV, including our second case who was a 33-year-old male patient (Case 2) with congestive heart failure requiring CTx. Case 2 was homozygous for a point mutation in the 5' splice donor site of intron 5 in the ATGL, which results in at least two types of mRNAs due to splicing defects. The myocardium of both patients (Cases 1 and 2) showed up-regulation of peroxisome proliferated activated receptors (PPARs), key transcription factors for metabolism of long chain fatty acids (LCFAs), which was in contrast to these molecules' lower expression in ATGL-targeted mice. We investigated the intracellular metabolism of LCFAs under human ATGL-deficient conditions using patients' passaged skin fibroblasts as a model. ATGL-deficient cells showed higher uptake and abnormal intracellular transport of LCFA, resulting in massive TG accumulation. We used these findings from cardiac specimens and cell-biological experiments to construct a hypothetical model to clarify the pathophysiology of the human disorder. In patients with TGCV, even when hydrolysis of intracellular TG is defective, the marked up-regulation of PPARγ and related genes may lead to increased uptake of LCFAs, the substrates for TG synthesis. This potentially vicious cycle of LCFAs could explain the massive accumulation of TG and severe clinical course for this rare disease.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Lipase from Candida rugosa, Type VII, ≥700 unit/mg solid
Sigma-Aldrich
Lipase from porcine pancreas, Type II, ≥125 units/mg protein (using olive oil (30 min incubation)), 30-90 units/mg protein (using triacetin)
Sigma-Aldrich
Résine acrylique contenant des lipases, ≥5,000 U/g, recombinant, expressed in Aspergillus niger
Sigma-Aldrich
Lipase from porcine pancreas, Type VI-S, ≥20,000 units/mg protein, lyophilized powder
Sigma-Aldrich
Lipase B Candida antarctica, recombinant from Aspergillus oryzae, powder, beige, ~9 U/mg
Sigma-Aldrich
Lipase from Aspergillus niger, powder (fine), ~200 U/g
Sigma-Aldrich
Lipase from Aspergillus oryzae, solution, ≥100,000 U/g, white, beige
Sigma-Aldrich
Lipase from Candida rugosa, lyophilized powder, ≥40,000 units/mg protein
Sigma-Aldrich
Lipase immobilized from Candida antarctica, beads, slightly brown, >2 U/mg
Sigma-Aldrich
Lipase from Candida sp., recombinant, expressed in Aspergillus niger
Sigma-Aldrich
Lipase from Pseudomonas cepacia, powder, light beige, ≥30 U/mg
Sigma-Aldrich
Lipase from Aspergillus oryzae, ≥20,000 U/g
Sigma-Aldrich
Lipase from wheat germ, Type I, lyophilized powder, 5-15 units/mg solid
Sigma-Aldrich
Lipase from Rhizopus oryzae, powder (fine), ~10 U/mg
Sigma-Aldrich
Lipase from Aspergillus oryzae, lyophilized, powder, white, ~50 U/mg
Sigma-Aldrich
Lipase from Pseudomonas sp., Type XIII, lyophilized powder, ≥15 units/mg solid
Sigma-Aldrich
Lipase from Candida rugosa, lyophilized, powder (fine), 15-25 U/mg
Sigma-Aldrich
Lipase from Candida rugosa, powder, yellow-brown, ≥2 U/mg
Sigma-Aldrich
Lipase from Mucor miehei, lyophilized powder, ≥4,000 units/mg solid (using olive oil)
Sigma-Aldrich
Lipase from Mucor miehei, powder, slightly brown, ~1 U/mg
Sigma-Aldrich
Lipase from Rhizopus niveus, powder (fine), ≥1.5 U/mg
Sigma-Aldrich
Lipase from Mucor javanicus, lyophilized powder, ≥300 units/mg solid (using olive oil)
Sigma-Aldrich
Lipase A Candida antarctica, recombinant from Aspergillus oryzae, powder, beige, ~2 U/mg