Saltar al contenido
Merck

753998

Sigma-Aldrich

PCDTBT

Sinónimos:

Poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)], Poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]

Iniciar sesiónpara Ver la Fijación de precios por contrato y de la organización


About This Item

Fórmula lineal:
(C43H47N3S3)nC12H10
Número de CAS:
Código UNSPSC:
12352103
NACRES:
NA.23

descripción

Band gap: 1.9 eV

Formulario

solid

mol peso

average Mw 100,000-140,000

pérdida

0.5 wt. % TGA, 409 °C

mp

270-300 °C

temperatura de transición

Tm >400 °C

λmáx.

576 nm

Energía orbital

HOMO -5.5 eV 
LUMO -3.6 eV 

rendimiento de la unidad OPV

ITO/MoO3-Al/PCDTBT:PC71BM/MoO3/Al

  • Short-circuit current density (Jsc): 10.88 mA/cm2
  • Open-circuit voltage (Voc): 0.88 V
  • Fill Factor (FF): 0.71
  • Power Conversion Efficiency (PCE): 6.77 %

ITO/PEDOT:PSS/PCDTBT:PC71BM (1:4)/TiOxAl
  • Short-circuit current density (Jsc): 11.32 mA/cm2
  • Open-circuit voltage (Voc): 0.88 V
  • Fill Factor (FF): 0.69
  • Power Conversion Efficiency (PCE): 6.9 %

ITO/PEDOT:PSS/PCDTBT:PC71BM/Al
  • Short-circuit current density (Jsc): 9.7 mA/cm2
  • Open-circuit voltage (Voc): 0.82 V
  • Fill Factor (FF): 0.61
  • Power Conversion Efficiency (PCE): 5.3 %

propiedades de los semiconductores

P-type (mobility=6×10−5 cm2/V·s)

¿Está buscando productos similares? Visita Guía de comparación de productos

Descripción general

PCDTBT is a carbozole based semiconducting co-polymer that is used as a donor material with a low band gap and a power efficiency of 9%. It has a quantum efficiency close to 100% that makes it a viable alternative of P3HT for a wide range of photovoltaics based applications.[1][2][3]
Soluble in THF, chloroform, chlorobenzene, dichlorobenzene, and 1,2,3-trichlorobenzene

Aplicación

PCDTBT blend with PCBM as a nanocomposite can be used as a donor/acceptor material for the fabrication of photovoltaic solar cells and photovoltaic inks.[4][5][6] It may also be used as an active layer that can be used in the development of organic field effect transistors (OFETs) for the parts per million (ppm) level detection of NO2 gas.[7]

Código de clase de almacenamiento

11 - Combustible Solids

Clase de riesgo para el agua (WGK)

WGK 3

Punto de inflamabilidad (°F)

Not applicable

Punto de inflamabilidad (°C)

Not applicable


Elija entre una de las versiones más recientes:

Certificados de análisis (COA)

Lot/Batch Number

¿No ve la versión correcta?

Si necesita una versión concreta, puede buscar un certificado específico por el número de lote.

¿Ya tiene este producto?

Encuentre la documentación para los productos que ha comprado recientemente en la Biblioteca de documentos.

Visite la Librería de documentos

Aqueous PCDTBT: PC71BM Photovoltaic Inks Made by Nanoprecipitation
Prunet G, et al.
Macromolecular Rapid Communications, 39(2), 1700504-1700504 (2018)
Effect of traps on the charge transport in semiconducting polymer PCDTBT
Khan MT, et al.
Solid-State Electron, 145, 49-53 (2018)
Nanomorphology of PCDTBT:PC70BM Bulk Heterojunction Solar Cells
Moon, J. S.; et al.
Advanced Engineering Materials, 2, 304-308 (2012)
Ultrafast exciton dissociation followed by nongeminate charge recombination in PCDTBT: PCBM photovoltaic blends
Etzold F, et al.
Journal of the American Chemical Society, 133(24), 9469-9479 (2011)
TBT Entirely Dominates the Electronic Structure of the Conjugated Copolymer PCDTBT: Insights from Time-Resolved Electron Paramagnetic Resonance Spectroscopy
Matt C, et al.
Macromolecules, 1-16 (2018)

Artículos

The development of high-performance conjugated organic molecules and polymers has received widespread attention in industrial and academic research.

Organic materials in optoelectronic devices like LEDs and solar cells are of significant academic and commercial interest.

Organic photovoltaics (OPVs) represent a low-cost, lightweight, and scalable alternative to conventional solar cells. While significant progress has been made in the development of conventional bulk heterojunction cells, new approaches are required to achieve the performance and stability necessary to enable commercially successful OPVs.

Thin, lightweight, and flexible electronic devices meet widespread demand for scalable, portable, and robust technology.

Ver todo

Preguntas

Revisiones

Sin puntuación

Filtros activos

Nuestro equipo de científicos tiene experiencia en todas las áreas de investigación: Ciencias de la vida, Ciencia de los materiales, Síntesis química, Cromatografía, Analítica y muchas otras.

Póngase en contacto con el Servicio técnico