Direkt zum Inhalt
Merck
  • The induction of neuronal death by up-regulated microglial cathepsin H in LPS-induced neuroinflammation.

The induction of neuronal death by up-regulated microglial cathepsin H in LPS-induced neuroinflammation.

Journal of neuroinflammation (2015-04-19)
Kai Fan, Daobo Li, Yanli Zhang, Chao Han, Junjie Liang, Changyi Hou, Hongliang Xiao, Kazuhiro Ikenaka, Jianmei Ma
ZUSAMMENFASSUNG

Neuroinflammation is a hallmark that leads to selective neuronal loss and/or dysfunction in neurodegenerative disorders. Microglia-derived lysosomal cathepsins are increasingly recognized as important inflammatory mediators to trigger signaling pathways that aggravate neuroinflammation. However, cathepsin H (Cat H), a cysteine protease, has been far less studied in neuroinflammation, compared to cathepsins B, D, L, and S. The expression patterns and functional roles of Cat H in the brain in neuroinflammation remain unknown. C57BL/6J mice were intraperitoneally injected with either 0.9% saline or lipopolysaccharide (LPS, 5 mg/kg). Immunohistochemistry (IHC) and in situ hybridization (ISH) were used to analyze expression and localization of Cat H in the brain. Nitrite assay was used to examine microglial activation in vitro; ELISA was used to determine the release of Cat H and proinflammatory cytokines (TNF-α, IL-1β, IL-6, IFN-γ). Cat H activity was analyzed by cellular Cat H assay kit. Flow cytometry and in situ cell death detection were used to investigate neuronal death. Data were evaluated for statistical significance with one-way ANOVA and t test. Cat H mRNA was only present in perivascular microglia and non-parenchymal sites under normal conditions. After LPS injection, Cat H mRNA expression in activated microglia in different brain regions was increased. Twenty-four hours after LPS injection, Cat H mRNA expression was maximal in SNr; 72 h later, it peaked in cerebral cortex and hippocampus then decreased and maintained at a low level. The expression of Cat H protein exhibited the similar alterations after LPS injection. In vitro, inflammatory stimulation (LPS, TNF-α, IL-1β, IL-6, and IFN-γ) increased the release and activity of Cat H in microglia. Conversely, addition of Cat H to microglia promoted the production and release of NO, IL-1β, and IFN-γ which could be prevented by neutralizing antibody. Further, addition of Cat H to Neuro2a cells induced neuronal death. Taken together, these data indicate that the up-regulated microglial Cat H expression, release, and activity in the brain lead to neuronal death in neuroinflammation. The functional link of Cat H with microglial activation might contribute to the initiation and maintenance of microglia-driven chronic neuroinflammation.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Saccharose, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Saccharose, ≥99.5% (GC)
Sigma-Aldrich
Saccharose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Saccharose, BioUltra, for molecular biology, ≥99.5% (HPLC)
USP
Saccharose, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Saccharose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Saccharose, ≥99.5% (GC)
Sigma-Aldrich
Saccharose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Saccharose, Grade I, ≥99% (GC), suitable for plant cell culture
Sigma-Aldrich
Saccharose, meets USP testing specifications
Supelco
Saccharose, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Saccharose, ACS reagent
Millipore
Saccharose, suitable for microbiology, ACS reagent, ≥99.0%
Sigma-Aldrich
Saccharose, puriss., meets analytical specification of Ph. Eur., BP, NF
Supelco
Saccharose, analytical standard, for enzymatic assay kit SCA20
Saccharose, European Pharmacopoeia (EP) Reference Standard
Supelco
Digoxigenin, analytical standard
Digoxigenin, European Pharmacopoeia (EP) Reference Standard