Saltar al contenido
Merck

931950

Sigma-Aldrich

Sodium perchlorate

anhydrous, ≥99.9% trace metals basis

Sinónimos:

Sodium Perchlorate, Hyperchloric acid sodium salt

Iniciar sesiónpara Ver la Fijación de precios por contrato y de la organización


About This Item

Fórmula empírica (notación de Hill):
ClNaO4
Número de CAS:
Peso molecular:
122.44
MDL number:
UNSPSC Code:
12352302
NACRES:
NA.23

grade

anhydrous
battery grade

Quality Level

assay

≥99.9% trace metals basis

form

powder

impurities

≤1000 ppm (trace metals analysis)

pH

6.0-8.0 (25 °C, 5%, aq.sol.)

mp

482 °C

solubility

H2O: 209 g/dL at 15 °C

anion traces

chloride (Cl-): ≤30 ppm
sulfate (SO42-): ≤20 ppm

cation traces

Fe: ≤5 ppm
K: ≤500 ppm

application(s)

battery manufacturing

InChI

1S/ClHO4.Na/c2-1(3,4)5;/h(H,2,3,4,5);/q;+1/p-1

InChI key

BAZAXWOYCMUHIX-UHFFFAOYSA-M

¿Está buscando productos similares? Visita Guía de comparación de productos

General description

Anhydrous sodium perchlorate is a white crystalline solid. It is hygroscopic and absorbs water to form its monohydrate. Anhydrous sodium perchlorate is highly soluble in water, and soluble in a range of polar organic solvents such as methanol, ethanol, acetone, carbonates (including ethylene carbonate, dimethyl carbonate, propylene carbonate, and diethyl carbonate), and ethers (including dimethoxyethane, tetrahydrofuran, and triethylene glycol dimethyl ether). It is insoluble in benzene, chloroform, and toluene.

Application

The major application of anhydrous sodium perchlorate is as an electrolyte in sodium-ion batteries. It is popular because of its solubility in ethers and carbonates, its wide electrochemical stability window (e.g. from 0 to 5 V vs Na+/Na in propylene carbonate, triglyme, or diethylcarbonate)[1], and its compatibility with a wide range of materials. It has been used in batteries with hard-carbon anodes[2], mesoporous carbon anodes[3], sodium cobalt oxide cathodes (NaxCoO2)[4], sodium vanadium oxide cathodes (NaxVO2)[5], titanium dioxide cathodes[6], and emerging materials like high-entropy layered oxide cathodes[7].

Packaging

10 g in glass bottle
25 g in glass bottle

signalword

Danger

Hazard Classifications

Acute Tox. 4 Oral - Eye Irrit. 2 - Ox. Sol. 1 - STOT RE 2

target_organs

Thyroid

Storage Class

5.1A - Strongly oxidizing hazardous materials

wgk_germany

WGK 1


Certificados de análisis (COA)

Busque Certificados de análisis (COA) introduciendo el número de lote del producto. Los números de lote se encuentran en la etiqueta del producto después de las palabras «Lot» o «Batch»

¿Ya tiene este producto?

Encuentre la documentación para los productos que ha comprado recientemente en la Biblioteca de documentos.

Visite la Librería de documentos

Gianluca Longoni et al.
Nano letters, 17(2), 992-1000 (2016-12-28)
Rechargeable sodium-ion batteries are becoming a viable alternative to lithium-based technology in energy storage strategies, due to the wide abundance of sodium raw material. In the past decade, this has generated a boom of research interest in such systems. Notwithstanding
Jia Ding et al.
ACS nano, 7(12), 11004-11015 (2013-11-07)
We demonstrate that peat moss, a wild plant that covers 3% of the earth's surface, serves as an ideal precursor to create sodium ion battery (NIB) anodes with some of the most attractive electrochemical properties ever reported for carbonaceous materials.
Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries.
Komaba, S., et al.
Advances in Functional Materials, 21, 3859-3867 (2011)
R Berthelot et al.
Nature materials, 10(1), 74-80 (2010-12-15)
Sodium layered oxides NaxCoO2 form one of the most fascinating low-dimensional and strongly correlated systems; in particular P2–NaxCoO2 exhibits various single-phase domains with different Na+/vacancy patterns depending on the sodium concentration. Here we used sodium batteries to clearly depict the
Chenglong Zhao et al.
Angewandte Chemie (International ed. in English), 59(1), 264-269 (2019-10-18)
Material innovation on high-performance Na-ion cathodes and the corresponding understanding of structural chemistry still remain a challenge. Herein, we report a new concept of high-entropy strategy to design layered oxide cathodes for Na-ion batteries. An example of layered O3-type NaNi0.12

Nuestro equipo de científicos tiene experiencia en todas las áreas de investigación: Ciencias de la vida, Ciencia de los materiales, Síntesis química, Cromatografía, Analítica y muchas otras.

Póngase en contacto con el Servicio técnico