Saltar al contenido
Merck

81300

Sigma-Aldrich

Poli(etilenglicol)

average MN 20,000, hydroxyl

Sinónimos:

PEG

Iniciar sesiónpara Ver la Fijación de precios por contrato y de la organización


About This Item

Fórmula lineal:
H(OCH2CH2)nOH
Número de CAS:
MDL number:
UNSPSC Code:
12352104
PubChem Substance ID:
NACRES:
NA.23

Nombre del producto

Poli(etilenglicol), average Mn 20,000

form

flakes

Quality Level

mol wt

average Mn 20,000

mp

63-66 °C

Ω-end

hydroxyl

α-end

hydroxyl

SMILES string

C(CO)O

InChI

1S/C2H6O2/c3-1-2-4/h3-4H,1-2H2

InChI key

LYCAIKOWRPUZTN-UHFFFAOYSA-N

¿Está buscando productos similares? Visita Guía de comparación de productos

General description

El polietilenglicol (PEG) es un polímero hidrófilo. Puede sintetizarse fácilmente mediante la polimerización aniónica de apertura de anillo del óxido de etileno, en una gama de pesos moleculares y variedad de grupos finales. Cuando cuando establece enlaces cruzados en redes, el PEG puede tener un elevado contenido de agua, formando “hidrogeles”. La formación del hidrogel puede iniciarse mediante la reticulación del PEG por radiación ionizante o mediante la formación enlaces cruzados covalentes de macrómeros de PEG con extremos de cadena reactivos. El PEG es un material adecuado para aplicaciones biológicas ya que no desencadena una respuesta inmunitaria.

Application

EL PEG se ha utilizado para modificar proteínas y péptidos terapéuticos para aumentar su solubilidad y reducir su toxicidad.

Los hidrogeles de PEG fotopolimerizados tienen aplicaciones emergentes en la fabricación de barreras bioactivas e inmunoaislantes para la encapsulación de células.

Other Notes

Peso molecular: Mn 16,000-24,000

Storage Class

11 - Combustible Solids

wgk_germany

WGK 1

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Gloves, type N95 (US)


Elija entre una de las versiones más recientes:

Certificados de análisis (COA)

Lot/Batch Number

¿No ve la versión correcta?

Si necesita una versión concreta, puede buscar un certificado específico por el número de lote.

¿Ya tiene este producto?

Encuentre la documentación para los productos que ha comprado recientemente en la Biblioteca de documentos.

Visite la Librería de documentos

Los clientes también vieron

Xu Zhang et al.
Langmuir : the ACS journal of surfaces and colloids, 28(40), 14330-14337 (2012-09-20)
Understanding the interface between DNA and nanomaterials is crucial for rational design and optimization of biosensors and drug delivery systems. For detection and delivery into cells, where high concentrations of cellular proteins are present, another layer of complexity is added.
Chien-Chi Lin et al.
Biomaterials, 32(36), 9685-9695 (2011-09-20)
Hydrogels provide three-dimensional frameworks with tissue-like elasticity and high permeability for culturing therapeutically relevant cells or tissues. While recent research efforts have created diverse macromer chemistry to form hydrogels, the mechanisms of hydrogel polymerization for in situ cell encapsulation remain
Carrie F Olson-Manning
Molecular biology and evolution, 37(8), 2257-2267 (2020-03-21)
Metabolic networks are complex cellular systems dependent on the interactions among, and regulation of, the enzymes in the network. Although there is great diversity of types of enzymes that make up metabolic networks, the models meant to understand the possible
Teagan E Bate et al.
Soft matter, 15(25), 5006-5016 (2019-06-06)
Self-organization of kinesin-driven, microtubule-based 3D active fluids relies on the collective dynamics of single microtubules. However, the connection between macroscopic fluid flows and microscopic motion of microtubules remains unclear. In this work, the motion of single microtubules was characterized by
Oliver J Harrison et al.
Cell reports, 30(8), 2655-2671 (2020-02-27)
Non-clustered δ1- and δ2-protocadherins, close relatives of clustered protocadherins, function in cell adhesion and motility and play essential roles in neural patterning. To understand the molecular interactions underlying these functions, we used solution biophysics to characterize binding of δ1- and

Artículos

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

Designing biomaterial scaffolds mimicking complex living tissue structures is crucial for tissue engineering and regenerative medicine advancements.

Designing biomaterial scaffolds mimicking complex living tissue structures is crucial for tissue engineering and regenerative medicine advancements.

Designing biomaterial scaffolds mimicking complex living tissue structures is crucial for tissue engineering and regenerative medicine advancements.

Ver todo

Nuestro equipo de científicos tiene experiencia en todas las áreas de investigación: Ciencias de la vida, Ciencia de los materiales, Síntesis química, Cromatografía, Analítica y muchas otras.

Póngase en contacto con el Servicio técnico