Passa al contenuto
Merck
  • Mechanistic understanding of brain drug disposition to optimize the selection of potential neurotherapeutics in drug discovery.

Mechanistic understanding of brain drug disposition to optimize the selection of potential neurotherapeutics in drug discovery.

Pharmaceutical research (2014-03-14)
Irena Loryan, Vikash Sinha, Claire Mackie, Achiel Van Peer, Wilhelmus Drinkenburg, An Vermeulen, Denise Morrison, Mario Monshouwer, Donald Heald, Margareta Hammarlund-Udenaes
ABSTRACT

The current project was undertaken with the aim to propose and test an in-depth integrative analysis of neuropharmacokinetic (neuroPK) properties of new chemical entities (NCEs), thereby optimizing the routine of evaluation and selection of novel neurotherapeutics. Forty compounds covering a wide range of physicochemical properties and various CNS targets were investigated. The combinatory mapping approach was used for the assessment of the extent of blood-brain and cellular barriers transport via estimation of unbound-compound brain (Kp,uu,brain) and cell (Kp,uu,cell) partitioning coefficients. Intra-brain distribution was evaluated using the brain slice method. Intra- and sub-cellular distribution was estimated via calculation of unbound-drug cytosolic and lysosomal partitioning coefficients. Assessment of Kp,uu,brain revealed extensive variability in the brain penetration properties across compounds, with a prevalence of compounds actively effluxed at the blood-brain barrier. Kp,uu,cell was valuable for identification of compounds with a tendency to accumulate intracellularly. Prediction of cytosolic and lysosomal partitioning provided insight into the subcellular accumulation. Integration of the neuroPK parameters with pharmacodynamic readouts demonstrated the value of the proposed approach in the evaluation of target engagement and NCE selection. With the rather easily-performed combinatory mapping approach, it was possible to provide quantitative information supporting the decision making in the drug discovery setting.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acido formico, reagent grade, ≥95%
Sigma-Aldrich
Acido formico, ACS reagent, ≥96%
Sigma-Aldrich
Acido formico, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Ammonio acetato, ACS reagent, ≥97%
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Formato di ammonio, reagent grade, 97%
Sigma-Aldrich
Acetonitrile, for HPLC, for UV, ≥99.9% (GC)
Sigma-Aldrich
Ammonio acetato, ≥99.99% trace metals basis
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acido formico, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
Formato di ammonio, ≥99.995% trace metals basis
Sigma-Aldrich
Acido formico, ACS reagent, ≥88%
Sigma-Aldrich
Ammonio acetato, for molecular biology, ≥98%
Sigma-Aldrich
Acetonitrile, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Ammonium acetate solution, for molecular biology, 7.5 M
Sigma-Aldrich
Ammonium formate solution, BioUltra, 10 M in H2O
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Ammonio acetato, 99.999% trace metals basis
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Acido formico, ≥95%, FCC, FG
Supelco
Formato di ammonio, eluent additive for LC-MS, LiChropur, ≥99.0%
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Supelco
Ammonio acetato, LiChropur, eluent additive for LC-MS
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Supelco
Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetonitrile, ≥99.5% (GC)
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard