In the present study, we report the dispersion of titanate nanotubes (TiONts) via polymer grafting (PolyEthylene Glycol, PEG) or polymer adsorption (polyethylene imine, PEI) where different TiONts/polymer ratios have been investigated. The TiONts/PEI and TiONts/PEG nanohybrids were characterized by scanning and transmission electron microscopy as well as by zeta potential measurements in order to determine both their dispersion state and stability in water (at different pH for zetametry). The nature of the chemical bonds at the surface of these nanohybrids was investigated by Fourier-transformed infrared (FTIR) spectroscopy while the grafting densities of PEG on the nanotubes were quantified by thermogravimetric analyses (TGA). The nanohybrids reported here are promising tools for biotechnology applications due to their tubular morphology, their very good dispersion in water and the reactivity of their surface.