Amyloid β (Aβ) fibrillar deposits in the brain are a hallmark of Alzheimer disease (AD). Curcumin, a common ingredient of Asian spices, is known to disrupt Aβ fibril formation and to reduce AD pathology in mouse models. Understanding the structural changes induced by curcumin can potentially lead to AD pharmaceutical agents with inherent bio-compatibility. Here, we use solid-state NMR spectroscopy to investigate the structural modifications of amyloid β(1-42) (Aβ42) aggregates induced by curcumin. We find that curcumin induces major structural changes in the Asp-23-Lys-28 salt bridge region and near the C terminus. Electron microscopy shows that the Aβ42 fibrils are disrupted by curcumin. Surprisingly, some of these alterations are similar to those reported for Zn(2+) ions, another agent known to disrupt the fibrils and alter Aβ42 toxicity. Our results suggest the existence of a structurally related family of quasi-fibrillar conformers of Aβ42, which is stabilized both by curcumin and by Zn(2+.)