Accéder au contenu
Merck

Chronic hypoxia promotes pulmonary artery endothelial cell proliferation through H2O2-induced 5-lipoxygenase.

PloS one (2014-06-07)
Kristi M Porter, Bum-Yong Kang, Sherry E Adesina, Tamara C Murphy, C Michael Hart, Roy L Sutliff
RÉSUMÉ

Pulmonary Hypertension (PH) is a progressive disorder characterized by endothelial dysfunction and proliferation. Hypoxia induces PH by increasing vascular remodeling. A potential mediator in hypoxia-induced PH development is arachidonate 5-Lipoxygenase (ALOX5). While ALOX5 metabolites have been shown to promote pulmonary vasoconstriction and endothelial cell proliferation, the contribution of ALOX5 to hypoxia-induced proliferation remains unknown. We hypothesize that hypoxia exposure stimulates HPAEC proliferation by increasing ALOX5 expression and activity. To test this, human pulmonary artery endothelial cells (HPAEC) were cultured under normoxic (21% O2) or hypoxic (1% O2) conditions for 24-, 48-, or 72 hours. In a subset of cells, the ALOX5 inhibitor, zileuton, or the 5-lipoxygenase activating protein inhibitor, MK-886, was administered during hypoxia exposure. ALOX5 expression was measured by qRT-PCR and western blot and HPAEC proliferation was assessed. Our results demonstrate that 24 and 48 hours of hypoxia exposure have no effect on HPAEC proliferation or ALOX5 expression. Seventy two hours of hypoxia significantly increases HPAEC ALOX5 expression, hydrogen peroxide (H2O2) release, and HPAEC proliferation. We also demonstrate that targeted ALOX5 gene silencing or inhibition of the ALOX5 pathway by pharmacological blockade attenuates hypoxia-induced HPAEC proliferation. Furthermore, our findings indicate that hypoxia-induced increases in cell proliferation and ALOX5 expression are dependent on H2O2 production, as administration of the antioxidant PEG-catalase blocks these effects and addition of H2O2 to HPAEC promotes proliferation. Overall, these studies indicate that hypoxia exposure induces HPAEC proliferation by activating the ALOX5 pathway via the generation of H2O2.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Chlorure de sodium, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Chlorure de calcium solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Chlorure de sodium solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Chlorure de sodium solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Chlorure de sodium, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Calcium chloride, anhydrous, BioReagent, suitable for insect cell culture, suitable for plant cell culture, ≥96.0%
SAFC
Chlorure de sodium solution, 5 M
Sigma-Aldrich
Chlorure de sodium solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Chlorure de sodium, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Chlorure de sodium, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Calcium chloride, anhydrous, powder, 99.99% trace metals basis
Sigma-Aldrich
Calcium chloride, AnhydroBeads, −10 mesh, ≥99.9% trace metals basis
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Chlorure de calcium dihydrate
Sigma-Aldrich
Chlorure de sodium solution, 0.85%
Supelco
Chlorure de sodium, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Calcium chloride, AnhydroBeads, −10 mesh, ≥99.99% trace metals basis
Supelco
Chlorure de calcium solution, 0.1 M Ca, analytical standard (for ion-selective electrodes)
Sigma-Aldrich
Chlorure de sodium, tested according to Ph. Eur.
Sigma-Aldrich
MISSION® esiRNA, targeting human ALOX5
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Alox5