Accéder au contenu
Merck
  • Synthesis of peptides containing 2-oxohistidine residues and their characterization by liquid chromatography-tandem mass spectrometry.

Synthesis of peptides containing 2-oxohistidine residues and their characterization by liquid chromatography-tandem mass spectrometry.

Journal of peptide science : an official publication of the European Peptide Society (2015-01-06)
Che-Fan Huang, Yu-Hsuan Liu, Hwan-Ching Tai
RÉSUMÉ

Protein oxidation by reactive oxygen species has been associated with aging and neurodegenerative disorders, and histidine is one of the major oxidation targets due to its metal-chelating property and susceptibility to metal-catalyzed oxidation. 2-Oxohistidine, the major product of histidine oxidation, has been recently identified as a stable marker of oxidative damage in biological systems, but its biophysical and biochemical properties are understudied, partly because of difficulties in its chemical synthesis. We developed an efficient method to generate a 2-oxohistidine side chain using metal-catalyzed oxidation, applicable to both monomers and peptides. By optimizing reagent ratios and pH buffering in Cu(2+) /ascorbate/O2 reaction system, we improved the yield more than tenfold compared to reported conditions, which allowed us to obtain homogeneously modified 2-oxohisidine peptides for further studies. Analysis of 2-oxohistidine-containing model peptides by liquid chromatography-tandem mass spectrometry demonstrated increased retention time in reverse-phase chromatography and general stability of 2-oxohistidine under electrospray ionization and collision-induced dissociation. Thus, large-scale analysis of 2-oxohistidine-modified proteome should be feasible using shotgun protein mass spectrometry, and we were able to observe such peptides in proteomics datasets. The feasibility of acquiring purified peptide probes and peptide antigens containing 2-oxohistidine will help advance the study of this non-enzymatic posttranslational modification.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Acétonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Méthanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acide trifluoroacétique, ReagentPlus®, 99%
Sigma-Aldrich
Acide trifluoroacétique, suitable for HPLC, ≥99.0%
Sigma-Aldrich
Dichlorométhane, suitable for HPLC, ≥99.8%, contains amylene as stabilizer
Sigma-Aldrich
Méthanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Acide acétique, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Acétonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Hydroxyde de sodium, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Dichlorométhane, contains 40-150 ppm amylene as stabilizer, ACS reagent, ≥99.5%
Sigma-Aldrich
Acide acétique, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Méthanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Phosphate de sodium dibasic, ACS reagent, ≥99.0%
Sigma-Aldrich
Hydroxyde de sodium, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Acide formique, reagent grade, ≥95%
Sigma-Aldrich
Hydroxyde de sodium solution, 50% in H2O
Sigma-Aldrich
Méthanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Dichlorométhane, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 50-150 ppm amylene as stabilizer
Sigma-Aldrich
Acétonitrile, anhydrous, 99.8%
Sigma-Aldrich
Copper(II) sulfate pentahydrate, ACS reagent, ≥98.0%
Sigma-Aldrich
Acide formique, ACS reagent, ≥96%
Sigma-Aldrich
Acétonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acide formique, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Acétonitrile, for HPLC, for UV, ≥99.9% (GC)
Sigma-Aldrich
Acide trifluoroacétique, puriss. p.a., suitable for HPLC, ≥99.0% (GC)
Sigma-Aldrich
Dichlorométhane, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Hydroxyde de sodium solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Phosphate de sodium dibasic, puriss. p.a., ACS reagent, anhydrous, ≥99.0% (T)
Sigma-Aldrich
Acétonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Méthanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%