Direkt zum Inhalt
Merck
  • Expression of peroxiredoxins I and IV in multiple myeloma: association with immunoglobulin accumulation.

Expression of peroxiredoxins I and IV in multiple myeloma: association with immunoglobulin accumulation.

Virchows Archiv : an international journal of pathology (2013-06-06)
Ana Paula Dias Demasi, Elizabeth Ferreira Martinez, Marcelo Henrique Napimoga, Leandro Lopes Freitas, Jose Vassallo, Adriana Silva Santos Duarte, Andresa Borges Soares, Ney Soares Araujo, Vera Cavalcanti Araujo
ZUSAMMENFASSUNG

B cell malignancies are classified according to the postulated differentiation stage of the originating cell. During differentiation, structural and molecular changes occur to support massive processing of immunoglobulin in the endoplasmic reticulum (ER) of plasma cells at the final stage. When overloaded, the ER generates unfolded proteins and hydrogen peroxide (H2O2), which may cause cell death. Peroxiredoxins (Prxs) I and IV belong to a family of proteins able to catalyze peroxide detoxification. Here, we investigated a potential association of these enzymes with immunoglobulin production in B cell neoplasms. Our results demonstrated that the expression of Prx IV was induced as cells became competent to synthesize immunoglobulin light chains, as observed by immunohistochemistry in tissue sections of B cell neoplasms and also by qPCR and Western blotting analyses in malignant B cell lines. Prx I was frequently highly expressed, indicating additional regulatory processes besides ER activity. Results obtained exclusively with myeloma cells have shown that expression of Prxs I and IV, both at mRNA and protein levels, was associated with light chain secretion quantified by ELISA. We suggest that Prxs I and IV may provide survival advantages for terminally differentiated neoplastic B cells by the elimination of H2O2 and, in the case of Prx IV, by the conversion of this toxic in a functional agent driving oxidative protein folding in the ER. In this sense, multiple myeloma and lymphomas demonstrated to synthesize immunoglobulin chains may benefit from strategic therapies targeting the adaptive pathway to ER stress, including inhibition of Prxs I and IV activity.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Wasserstoffperoxid -Lösung, contains inhibitor, 30 wt. % in H2O, ACS reagent
Sigma-Aldrich
Wasserstoffperoxid -Lösung, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
Wasserstoffperoxid -Lösung, 50 wt. % in H2O, stabilized
Sigma-Aldrich
Wasserstoffperoxid-Lösung, 30% (w/w), puriss. p.a., reag. ISO, reag. Ph. Eur.
Sigma-Aldrich
Wasserstoffperoxid -Lösung, contains ~200 ppm acetanilide as stabilizer, 3 wt. % in H2O
Sigma-Aldrich
Wasserstoffperoxid -Lösung, contains inhibitor, 35 wt. % in H2O
Sigma-Aldrich
Wasserstoffperoxid -Lösung, purum p.a., ≥35% (RT)
Millipore
Wasserstoffperoxid -Lösung, 3%, suitable for microbiology
Sigma-Aldrich
Wasserstoffperoxid -Lösung, 34.5-36.5%
Supelco
Wasserstoffperoxid -Lösung, ≥30%, for trace analysis
Sigma-Aldrich
Wasserstoffperoxid -Lösung, contains inhibitor, 30 wt. % in H2O, meets USP testing specifications
Supelco
Wasserstoffperoxid -Lösung, 30 % (w/w), for ultratrace analysis
Sigma-Aldrich
Wasserstoffperoxid -Lösung, tested according to Ph. Eur.