Direkt zum Inhalt
Merck

A guanosine-centric mechanism for RNA chaperone function.

Science (New York, N.Y.) (2013-03-09)
Jacob K Grohman, Robert J Gorelick, Colin R Lickwar, Jason D Lieb, Brian D Bower, Brent M Znosko, Kevin M Weeks
ZUSAMMENFASSUNG

RNA chaperones are ubiquitous, heterogeneous proteins essential for RNA structural biogenesis and function. We investigated the mechanism of chaperone-mediated RNA folding by following the time-resolved dimerization of the packaging domain of a retroviral RNA at nucleotide resolution. In the absence of the nucleocapsid (NC) chaperone, dimerization proceeded through multiple, slow-folding intermediates. In the presence of NC, dimerization occurred rapidly through a single structural intermediate. The RNA binding domain of heterogeneous nuclear ribonucleoprotein A1 protein, a structurally unrelated chaperone, also accelerated dimerization. Both chaperones interacted primarily with guanosine residues. Replacing guanosine with more weakly pairing inosine yielded an RNA that folded rapidly without a facilitating chaperone. These results show that RNA chaperones can simplify RNA folding landscapes by weakening intramolecular interactions involving guanosine and explain many RNA chaperone activities.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Inosin, ≥99% (HPLC)
Sigma-Aldrich
Guanosin, ≥98%
Sigma-Aldrich
Guanosin, BioReagent, suitable for cell culture
Sigma-Aldrich
Guanosin, ≥97.0% (HPLC)