Direkt zum Inhalt
Merck
  • RanBP1 Couples Nuclear Export and Golgi Regulation through LKB1 to Promote Cortical Neuron Polarity.

RanBP1 Couples Nuclear Export and Golgi Regulation through LKB1 to Promote Cortical Neuron Polarity.

Cell reports (2018-09-06)
Chiara Mencarelli, Justyna Nitarska, Tim Kroecher, Francesco Ferraro, Katherine Massey, Antonella Riccio, Franck Pichaud
ZUSAMMENFASSUNG

Neuronal polarity in the developing cortex begins during the early stages of neural progenitor migration toward the cortical plate and culminates with the specification of the axon and dendrites. Here, we demonstrate that the Ran-dependent nucleocytoplasmic transport machinery is essential for the establishment of cortical neuron polarity. We found that Ran-binding protein 1 (RanBP1) regulates axon specification and dendritic arborization in cultured neurons in vitro and radial neural migration in vivo. During axonogenesis, RanBP1 regulates the cytoplasmic levels of the polarity protein LKB1/Par4, and this is dependent on the nuclear export machinery. Our results show that downstream of RanBP1, LKB1 function is mediated by the STK25-GM130 pathway, which promotes axonogenesis through Golgi regulation. Our results indicate that the nucleocytoplasmic transport machinery is a main regulator of neuron polarity, including radial migration, and that the regulated export of LKB1 through RanBP1 is a limiting step of axonogenesis.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Anti-Tau-1-Antikörper, Klon PC1C6, clone PC1C6, Chemicon®, from mouse
Sigma-Aldrich
MISSION® esiRNA, targeting human RCC1
Sigma-Aldrich
MISSION® esiRNA, targeting human STK11