Direkt zum Inhalt
Merck

409510

Sigma-Aldrich

Poly(ethylenglycol)-dimethacrylat

average MN 550, cross-linking reagent polymerization reactions, methacrylate, 80-120 ppm MEHQ as inhibitor, 270-330 ppm BHT as inhibitor

Synonym(e):

PEG-dimethacrylat

Anmeldenzur Ansicht organisationsspezifischer und vertraglich vereinbarter Preise

Größe auswählen

250 ML
CHF 114.00
1 L
CHF 370.00

CHF 114.00


Check Cart for Availability

Bulk-Bestellung anfordern

Größe auswählen

Ansicht ändern
250 ML
CHF 114.00
1 L
CHF 370.00

About This Item

Lineare Formel:
C3H5C(O)(OCH2CH2)nOC(O)C3H5
CAS-Nummer:
MDL-Nummer:
UNSPSC-Code:
12162002
PubChem Substanz-ID:
NACRES:
NA.23

CHF 114.00


Check Cart for Availability

Bulk-Bestellung anfordern

Produktbezeichnung

Poly(ethylenglycol)-dimethacrylat, average Mn 550, contains 80-120 ppm MEHQ as inhibitor, 270-330 ppm BHT as inhibitor

Form

liquid

Mol-Gew.

average Mn 550

Enthält

270-330 ppm BHT as inhibitor
80-120 ppm MEHQ as inhibitor

Eignung der Reaktion

reagent type: cross-linking reagent
reaction type: Polymerization Reactions

Brechungsindex

n20/D 1.466

bp

>200 °C/2 mmHg (lit.)

Dichte

1.099 g/mL at 25 °C

Ω-Ende

methacrylate

α-Ende

methacrylate

Polymerarchitektur

shape: linear
functionality: homobifunctional

Lagertemp.

2-8°C

SMILES String

OCCO.CC(=C)C(O)=O

InChI

1S/C10H14O4/c1-7(2)9(11)13-5-6-14-10(12)8(3)4/h1,3,5-6H2,2,4H3

InChIKey

STVZJERGLQHEKB-UHFFFAOYSA-N

Suchen Sie nach ähnlichen Produkten? Aufrufen Leitfaden zum Produktvergleich

Anwendung


  • PDGF-AA loaded photo-crosslinked chitosan-based hydrogel for promoting wound healing.: In dieser Studie wird die Verwendung eines photovernetzten Hydrogels auf Chitosanbasis mit Poly(ethylenglykol)dimethacrylat (PEGDMA) untersucht, um PDGF-AA freizusetzen und die Wundheilung zu verbessern. Die Ergebnisse zeigen signifikante Verbesserungen bei den Wundverschlussraten und der Geweberegeneration (Cai et al., 2024).

  • Reducing the foreign body response on human cochlear implants and their materials in vivo with photografted zwitterionic hydrogel coatings.: In dieser Studie wird die Anwendung von PEGDMA bei zwitterionischen Hydrogelbeschichtungen untersucht, um Fremdkörperreaktionen bei Cochlea-Implantaten zu minimieren. Die Beschichtungen reduzierten die Entzündung signifikant und verbesserten die Biokompatibilität in vivo (Horne et al., 2023).

  • Full factorial design of experiment-based and response surface methodology approach for evaluating variation in uniaxial compressive mechanical properties, and biocompatibility of photocurable PEGDMA-based scaffolds.: Diese Studie verwendet ein vollständiges faktorielles Design zur Optimierung der mechanischen Eigenschaften und Biokompatibilität von Gerüsten auf PEGDMA-Basis und unterstreicht deren potenziellen Einsatz in der Gewebetechnik und regenerativen Medizin (Bharadwez et al., 2023).

  • Antifouling and Mechanical Properties of Photografted Zwitterionic Hydrogel Thin-Film Coatings Depend on the Cross-Link Density.: In diesem Artikel wird untersucht, wie sich die Veränderung der Querverbindungsdichte in Hydrogelbeschichtungen auf PEGDMA-Basis auf ihre Antifouling- und mechanischen Eigenschaften auswirkt. Die Ergebnisse sind relevant für die Entwicklung strapazierfähiger und biokompatibler Beschichtungen für Medizinprodukte (Jensen et al., 2021).

  • Biocompatible and photocrosslinkable poly(ethylene glycol)/keratin biocomposite hydrogels.: Die Forschungsarbeit präsentiert die Entwicklung von PEGDMA/Keratin-Biokomposit-Hydrogelen, die eine ausgezeichnete Biokompatibilität und mögliche Anwendungen in Wirkstoffabgabesystemen und Gewebetechnik zeigen (Wang et al., 2021).

Lagerklassenschlüssel

10 - Combustible liquids

WGK

WGK 1

Flammpunkt (°F)

Not applicable

Flammpunkt (°C)

Not applicable


Hier finden Sie alle aktuellen Versionen:

Analysenzertifikate (COA)

Lot/Batch Number

Die passende Version wird nicht angezeigt?

Wenn Sie eine bestimmte Version benötigen, können Sie anhand der Lot- oder Chargennummer nach einem spezifischen Zertifikat suchen.

Besitzen Sie dieses Produkt bereits?

In der Dokumentenbibliothek finden Sie die Dokumentation zu den Produkten, die Sie kürzlich erworben haben.

Die Dokumentenbibliothek aufrufen

Laura Ferlauto et al.
Frontiers in neuroscience, 12, 648-648 (2018-10-05)
Reducing the mechanical mismatch between the stiffness of a neural implant and the softness of the neural tissue is still an open challenge in neuroprosthetics. The emergence of conductive hydrogels in the last few years has considerably widened the spectrum
Hiroaki Onoe et al.
Nature materials, 12(6), 584-590 (2013-04-02)
Artificial reconstruction of fibre-shaped cellular constructs could greatly contribute to tissue assembly in vitro. Here we show that, by using a microfluidic device with double-coaxial laminar flow, metre-long core-shell hydrogel microfibres encapsulating ECM proteins and differentiated cells or somatic stem
Katarzyna Kotynia et al.
Polimery w medycynie, 43(1), 21-28 (2013-07-03)
PURPOSE OF JOB: Currently, there isa need to increase comfort and visual acuity man. Simultaneously improving biocompatibility and minimizing the impact of the material on the physiology of the cornea is the primary driving force behind the evolution of materials
Kenneth C Koehler et al.
Biomaterials, 34(16), 4150-4158 (2013-03-08)
We report a new approach to controlled drug release based upon exploiting the dynamic equilibrium that exists between Diels-Alder reactants and products, demonstrating the release of a furan containing dexamethasone peptide (dex-KGPQG-furan) from a maleimide containing hydrogel. Using a reaction-diffusion
Albert H Park et al.
The Laryngoscope, 123(4), 1043-1048 (2013-03-21)
To determine the resorption rate and biocompatibility characteristics of novel cross-linked hydrogel ventilation tubes and varied formulations of polyester ventilation tubes in a Chinchilla model. Animal Study. Three cross-linked glycosaminoglycan hydrogel ventilation tubes fabricated by cross-linking thiol-modified chondroitin sulfate or

Artikel

Scaffold patterning with poly(ethylene glycol)-based hydrogels for cell presence in 2D and 3D environments on photoactive substrates.

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

Designing biomaterial scaffolds mimicking complex living tissue structures is crucial for tissue engineering and regenerative medicine advancements.

Questions

1–2 of 2 Questions  
  1. How can I determine the shelf life / expiration / retest date of this product?

    1 answer
    1. If this product has an expiration or retest date, it will be shown on the Certificate of Analysis (COA, CofA). If there is no retest or expiration date listed on the product's COA, we do not have suitable stability data to determine a shelf life. For these products, the only date on the COA will be the release date; a retest, expiration, or use-by-date will not be displayed.
      For all products, we recommend handling per defined conditions as printed in our product literature and website product descriptions. We recommend that products should be routinely inspected by customers to ensure they perform as expected.
      For products without retest or expiration dates, our standard warranty of 1 year from the date of shipment is applicable.
      For more information, please refer to the Product Dating Information document: https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/global/documents/449/386/product-dating-information-mk.pdf

      Helpful?

  2. How is shipping temperature determined? And how is it related to the product storage temperature?

    1 answer
    1. Products may be shipped at a different temperature than the recommended long-term storage temperature. If the product quality is sensitive to short-term exposure to conditions other than the recommended long-term storage, it will be shipped on wet or dry-ice. If the product quality is NOT affected by short-term exposure to conditions other than the recommended long-term storage, it will be shipped at ambient temperature. As shipping routes are configured for minimum transit times, shipping at ambient temperature helps control shipping costs for our customers. For more information, please refer to the Storage and Transport Conditions document: https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/global/documents/316/622/storage-transport-conditions-mk.pdf

      Helpful?

Reviews

No rating value

Active Filters

Unser Team von Wissenschaftlern verfügt über Erfahrung in allen Forschungsbereichen einschließlich Life Science, Materialwissenschaften, chemischer Synthese, Chromatographie, Analytik und vielen mehr..

Setzen Sie sich mit dem technischen Dienst in Verbindung.