Accéder au contenu
Merck
  • Optimization of microwave-assisted extraction of polyphenols from herbal teas and evaluation of their in vitro hypochlorous acid scavenging activity.

Optimization of microwave-assisted extraction of polyphenols from herbal teas and evaluation of their in vitro hypochlorous acid scavenging activity.

Journal of agricultural and food chemistry (2014-11-05)
Burcu Bekdeşer, Nazan Durusoy, Mustafa Özyürek, Kubilay Güçlü, Reşat Apak
RÉSUMÉ

Hypochlorous acid (HOCl) is an important reactive oxygen species (ROS) and non-radical and is taking part in physiological processes concerned with the defense of the organism, but there has been limited information regarding its scavenging by polyphenols. This study was designed to examine the HOCl scavenging activity of several polyphenols and microwave-assisted extracts of herbal teas. HOCl scavenging activity has usually been determined spectrophotometrically by a KI/taurine assay at 350 nm. Because some polyphenols (i.e., apigenin and chrysin) have a strong ultraviolet (UV) absorption in this range, their HOCl scavenging activity was alternatively determined without interference using resorcinol (1,3-dihydroxybenzene) as a fluorogenic probe. In the present assay, HOCl induces the chlorination of resorcinol into its non-fluorescent products. Polyphenols as HOCl scavengers inhibit the chlorination of the probe by this species. Thus, the 25% inhibitive concentration (IC25) value of polyphenols was determined using the relative increase in fluorescence intensity of the resorcinol probe. The HOCl scavenging activities of the test compounds decreased in the order: epigallocatechin gallate > quercetin > gallic acid > rutin > catechin > kaempferol. The present study revealed that epigallocatechin gallate (IC25 = 0.1 μM) was the most effective scavenging agent. In addition to polyphenols, four herbal teas were evaluated for their HOCl activity using the resorcinol method. The proposed spectrofluorometric method was practical, rapid, and less open to interferences by absorbing substances in the range of 200-420 nm. The results hint to the possibility of polyphenols having beneficial effects in diseases, such as atherosclerosis, in which HOCl plays a pathogenic role.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Méthanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, for molecular biology
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Méthanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Acide acétique, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Acide acétique, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Méthanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Hypochlorite de sodium solution, reagent grade, available chlorine 4.00-4.99 %
Sigma-Aldrich
Iodure de potassium, ACS reagent, ≥99.0%
Sigma-Aldrich
Méthanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Hypochlorite de sodium solution, reagent grade, available chlorine 10-15 %
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, for molecular biology
Sigma-Aldrich
Iodure de potassium, ReagentPlus®, 99%
Sigma-Aldrich
Acide acétique, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Méthanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Quercetin, ≥95% (HPLC), solid
Sigma-Aldrich
Acide acétique solution, suitable for HPLC
Sigma-Aldrich
Méthanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Acide acétique, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.8-100.5%
Sigma-Aldrich
Iodure de potassium, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99%
Sigma-Aldrich
Méthanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Acide acétique, glacial, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8%
Sigma-Aldrich
Gallic acid, 97.5-102.5% (titration)
Sigma-Aldrich
Iodure de potassium, puriss. p.a., reag. ISO, reag. Ph. Eur., ≥99.0%
Sigma-Aldrich
Taurine, ≥99%
Sigma-Aldrich
Éthanol, BioUltra, for molecular biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Sigma-Aldrich
Méthanol, Absolute - Acetone free
Sigma-Aldrich
Éthanol, purum, absolute ethanol, denaturated with 4.8% isopropanol, A15 IPA1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Méthanol, anhydrous, 99.8%