Pular para o conteúdo
Merck
  • Synaptic reorganization in the adult rat's ventral cochlear nucleus following its total sensory deafferentation.

Synaptic reorganization in the adult rat's ventral cochlear nucleus following its total sensory deafferentation.

PloS one (2011-09-03)
Heika Hildebrandt, Nadine A Hoffmann, Robert-Benjamin Illing
RESUMO

Ablation of a cochlea causes total sensory deafferentation of the cochlear nucleus in the brainstem, providing a model to investigate nervous degeneration and formation of new synaptic contacts in the adult brain. In a quantitative electron microscopical study on the plasticity of the central auditory system of the Wistar rat, we first determined what fraction of the total number of synaptic contact zones (SCZs) in the anteroventral cochlear nucleus (AVCN) is attributable to primary sensory innervation and how many synapses remain after total unilateral cochlear ablation. Second, we attempted to identify the potential for a deafferentation-dependent synaptogenesis. SCZs were ultrastructurally identified before and after deafferentation in tissue treated for ethanolic phosphotungstic acid (EPTA) staining. This was combined with pre-embedding immunocytochemistry for gephyrin identifying inhibitory SCZs, the growth-associated protein GAP-43, glutamate, and choline acetyltransferase. A stereological analysis of EPTA stained sections revealed 1.11±0.09 (S.E.M.)×10(9) SCZs per mm(3) of AVCN tissue. Within 7 days of deafferentation, this number was down by 46%. Excitatory and inhibitory synapses were differentially affected on the side of deafferentation. Excitatory synapses were quickly reduced and then began to increase in number again, necessarily being complemented from sources other than cochlear neurons, while inhibitory synapses were reduced more slowly and continuously. The result was a transient rise of the relative fraction of inhibitory synapses with a decline below original levels thereafter. Synaptogenesis was inferred by the emergence of morphologically immature SCZs that were consistently associated with GAP-43 immunoreactivity. SCZs of this type were estimated to make up a fraction of close to 30% of the total synaptic population present by ten weeks after sensory deafferentation. In conclusion, there appears to be a substantial potential for network reorganization and synaptogenesis in the auditory brainstem after loss of hearing, even in the adult brain.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Anticorpo anticolina acetiltransferase, Chemicon®, from goat
Sigma-Aldrich
Anti-Growth Associated Protein 43 Antibody, clone 9-1E12, clone 9-1E12, Chemicon®, from mouse
Sigma-Aldrich
Monoclonal Anti-Glutamate antibody produced in mouse, clone GLU-4, ascites fluid