Pular para o conteúdo
Merck

Bassoon contributes to tau-seed propagation and neurotoxicity.

Nature neuroscience (2022-11-08)
Pablo Martinez, Henika Patel, Yanwen You, Nur Jury, Abigail Perkins, Audrey Lee-Gosselin, Xavier Taylor, Yingjian You, Gonzalo Viana Di Prisco, Xiaoqing Huang, Sayan Dutta, Aruna B Wijeratne, Javier Redding-Ochoa, Syed Salman Shahid, Juan F Codocedo, Sehong Min, Gary E Landreth, Amber L Mosley, Yu-Chien Wu, David L McKinzie, Jean-Christophe Rochet, Jie Zhang, Brady K Atwood, Juan Troncoso, Cristian A Lasagna-Reeves
RESUMO

Tau aggregation is a defining histopathological feature of Alzheimer's disease and other tauopathies. However, the cellular mechanisms involved in tau propagation remain unclear. Here, we performed an unbiased quantitative proteomic study to identify proteins that specifically interact with this tau seed. We identified Bassoon (BSN), a presynaptic scaffolding protein, as an interactor of the tau seed isolated from a mouse model of tauopathy, and from Alzheimer's disease and progressive supranuclear palsy postmortem samples. We show that BSN exacerbates tau seeding and toxicity in both mouse and Drosophila models for tauopathy, and that BSN downregulation decreases tau spreading and overall disease pathology, rescuing synaptic and behavioral impairments and reducing brain atrophy. Our findings improve the understanding of how tau seeds can be stabilized by interactors such as BSN. Inhibiting tau-seed interactions is a potential new therapeutic approach for neurodegenerative tauopathies.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Anti-vinculina monoclonal, clone hVIN-1, ascites fluid
Sigma-Aldrich
Anticorpo monoclonal anti-proteína ácida fibrilar glial (GFAP), clone G-A-5, ascites fluid