Pular para o conteúdo
Merck
  • Differential Effects of Beta-Hydroxybutyrate Enantiomers on Induced Pluripotent Stem Derived Cardiac Myocyte Electrophysiology.

Differential Effects of Beta-Hydroxybutyrate Enantiomers on Induced Pluripotent Stem Derived Cardiac Myocyte Electrophysiology.

Biomolecules (2022-10-28)
Matthew L Klos, Wanqing Hou, Bernard Nsengimana, Shiwang Weng, Chuyun Yan, Suowen Xu, Eric Devaney, Shuxin Han
RESUMO

Beta-hydroxybutyrate (βOHB), along with acetoacetate and acetone, are liver-produced ketone bodies that are increased after fasting or prolonged exercise as an alternative fuel source to glucose. βOHB, as the main circulating ketone body, is not only a G-protein coupled receptor ligand but also a histone deacetylases inhibitor, prompting the reexamination of its role in health and disease. In this study, we compared the effects of two commercial βOHB formulations an enantiomer R βOHB and a racemic mixture ±βOHB on induced pluripotent stem cell cardiac myocytes (iPS-CMs) electrophysiology. Cardiac myocytes were cultured in R βOHB or ±βOHB for at least ten days after lactate selection. Flouvolt or Fluo-4 was used to assay iPS-CMs electrophysiology. We found that while both formulations increased the optical potential amplitude, R βOHB prolonged the action potential duration but ±βOHB shortened the action potential duration. Moreover, ±βOHB increased the peak calcium transient but R βOHB reduced the peak calcium transient. Co-culturing with glucose or fatty acids did not ameliorate the effects, suggesting that βOHB was more than a fuel source. The effect of βOHB on iPS-CMs electrophysiology is most likely stereoselective, and care must be taken to evaluate the role of exogenous βOHB in health and disease.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Anti-α-Actinin (Sarcomeric) antibody, Mouse monoclonal, clone EA-53, purified from hybridoma cell culture
Sigma-Aldrich
Anti-Troponin T (Cardiac Muscle) Antibody, clone 9C2.1, clone 9C2.1, from mouse