Pular para o conteúdo
Merck

Optic nerve regeneration screen identifies multiple genes restricting adult neural repair.

Cell reports (2021-03-04)
Jane A Lindborg, Nicholas M Tran, Devon M Chenette, Kristin DeLuca, Yram Foli, Ramakrishnan Kannan, Yuichi Sekine, Xingxing Wang, Marius Wollan, In-Jung Kim, Joshua R Sanes, Stephen M Strittmatter
RESUMO

Adult mammalian central nervous system (CNS) trauma interrupts neural networks and, because axonal regeneration is minimal, neurological deficits persist. Repair via axonal growth is limited by extracellular inhibitors and cell-autonomous factors. Based on results from a screen in vitro, we evaluate nearly 400 genes through a large-scale in vivo regeneration screen. Suppression of 40 genes using viral-driven short hairpin RNAs (shRNAs) promotes retinal ganglion cell (RGC) axon regeneration after optic nerve crush (ONC), and most are validated by separate CRISPR-Cas9 editing experiments. Expression of these axon-regeneration-suppressing genes is not significantly altered by axotomy. Among regeneration-limiting genes, loss of the interleukin 22 (IL-22) cytokine allows an early, yet transient, inflammatory response in the retina after injury. Reduced IL-22 drives concurrent activation of signal transducer and activator of transcription 3 (Stat3) and dual leucine zipper kinase (DLK) pathways and upregulation of multiple neuron-intrinsic regeneration-associated genes (RAGs). Including IL-22, our screen identifies dozens of genes that limit CNS regeneration. Suppression of these genes in the context of axonal damage could support improved neural repair.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Anti-NeuN Antibody, from chicken, purified by affinity chromatography
Sigma-Aldrich
Anti-IL22 antibody produced in rabbit, affinity isolated antibody