Pular para o conteúdo
Merck

Cell-Intrinsic Control of Interneuron Migration Drives Cortical Morphogenesis.

Cell (2018-02-24)
Carla G Silva, Elise Peyre, Mohit H Adhikari, Sylvia Tielens, Sebastian Tanco, Petra Van Damme, Lorenza Magno, Nathalie Krusy, Gulistan Agirman, Maria M Magiera, Nicoletta Kessaris, Brigitte Malgrange, Annie Andrieux, Carsten Janke, Laurent Nguyen
RESUMO

Interneurons navigate along multiple tangential paths to settle into appropriate cortical layers. They undergo a saltatory migration paced by intermittent nuclear jumps whose regulation relies on interplay between extracellular cues and genetic-encoded information. It remains unclear how cycles of pause and movement are coordinated at the molecular level. Post-translational modification of proteins contributes to cell migration regulation. The present study uncovers that carboxypeptidase 1, which promotes post-translational protein deglutamylation, controls the pausing of migrating cortical interneurons. Moreover, we demonstrate that pausing during migration attenuates movement simultaneity at the population level, thereby controlling the flow of interneurons invading the cortex. Interfering with the regulation of pausing not only affects the size of the cortical interneuron cohort but also impairs the generation of age-matched projection neurons of the upper layers.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Antiβ-actina monoclonal, clone AC-15, purified from hybridoma cell culture
Sigma-Aldrich
Monoclonal Anti-Tubulin, Acetylated antibody produced in mouse, clone 6-11B-1, ascites fluid
Sigma-Aldrich
Anti-Mouse IgG (Fc specific) antibody produced in goat, 2.0 mg/mL, affinity isolated antibody
Sigma-Aldrich
Anti-Tubulin Antibody, δ 2, Chemicon®, from rabbit
Sigma-Aldrich
Monoclonal Anti-Myosin Light Chain Kinase antibody produced in mouse, clone K36, ascites fluid
Sigma-Aldrich
Anti-CUX1 Antibody, a.a. 861, from rabbit, purified by affinity chromatography