Pular para o conteúdo
Merck
Todas as fotos(1)

Documentos

901034

Sigma-Aldrich

Polyvinyl alcohol (PVA) blend printing filament

1.75 mm

Sinônimo(s):

AtlasSupport, PVA blend filament

Faça loginpara ver os preços organizacionais e de contrato


About This Item

Número CAS:
Código UNSPSC:
12352104
NACRES:
NA.23

Nível de qualidade

descrição

Filament roundness: ≥95%
Melt flow rate: 2.3 g/10 min
Melt temperature: ±163 °C
Print temperature: ±180-205 °C
Specific gravity: 1.22 g/cc
Spool Hub Diameter: 52 mm
Spool Size (DxH): 200 mmx55 mm
Vicat softening temperature: ± 60.2 °C

forma

solid (filament)

cor

orange, natural

diâmetro

1.75 mm±0.05 mm (filament diameter)

InChI

1S/C2H4O/c1-2-3/h2-3H,1H2

chave InChI

IMROMDMJAWUWLK-UHFFFAOYSA-N

Procurando produtos similares? Visita Guia de comparação de produtos

Categorias relacionadas

Descrição geral

Polyvinyl alcohol (PVA) blend printing filament is a water-soluble support material for multi-extrusion 3D printing of complex architectures. This material is a blend of different grades of PVA to improve the thermal stability and printability of polyvinyl alcohol. In addition to these improvements, this blend is also less sensitive to degradation by humidity while retaining its water solubility. This pale orange, odorless, and high-quality filament extrudes between 180 to 205 °C and is suitable with all RepRap technology-based desktop 3D printers, such as MakerBot, Ultimaker, RepRap (Mendel, Huxley, Prusa), UP, Solidoodle, Leapfrog, etc. This PVA blend filament features good adhesion to a wide variety of materials, such as PLA, ABS, PETG, ASA, HIPS, and nylon, and is biodegradable in water with no hazardous by-products. While PVA is soluble in cold water, the dissolution process can be accelerated by using a continuously heated bath of warm water. When not in use, the filament should be stored at room temperature in dry conditions, such as in a sealed plastic bag or in a closed container with desiccant. Recommended initial printer settings can be found in the ′General Print Settings′ file.

Aplicação

AtlasSupport is a trademark of Formfutura VOF
Due to its water-solubility and biocompatibility, polyvinyl alcohol (PVA) filaments are most commonly used as a sacrificial material in the formation of tissue engineering constructs with unique and complicated architectures. The use of this material allows for the printing of scaffolds with large overhangs, deep internal cavities, and/or intricate geometries. In addition to their use as sacrificial materials, PVA filaments have also been used to print novel oral drug delivery devices and tablets.

Informações legais

AtlasSupport is a trademark of Formfutura VOF

Código de classe de armazenamento

11 - Combustible Solids

Classe de risco de água (WGK)

WGK 1

Ponto de fulgor (°F)

49.5 °F - closed cup

Ponto de fulgor (°C)

9.7 °C - closed cup


Certificados de análise (COA)

Busque Certificados de análise (COA) digitando o Número do Lote do produto. Os números de lote e remessa podem ser encontrados no rótulo de um produto após a palavra “Lot” ou “Batch”.

Já possui este produto?

Encontre a documentação dos produtos que você adquiriu recentemente na biblioteca de documentos.

Visite a Biblioteca de Documentos

Os clientes também visualizaram

Slide 1 of 2

1 of 2

Alice Melocchi et al.
International journal of pharmaceutics, 509(1-2), 255-263 (2016-05-25)
Fused deposition modeling (FDM) is a 3D printing technique based on the deposition of successive layers of thermoplastic materials following their softening/melting. Such a technique holds huge potential for the manufacturing of pharmaceutical products and is currently under extensive investigation.
Shuai Li et al.
ACS applied materials & interfaces, 8(38), 25096-25103 (2016-09-09)
Despite considerable advances in tissue engineering over the past two decades, solutions to some crucial problems remain elusive. Vascularization is one of the most important factors that greatly influence the function of scaffolds. Many research studies have focused on the
Tatsuaki Tagami et al.
Biological & pharmaceutical bulletin, 40(3), 357-364 (2017-03-03)
Three-dimensional (3D) printers have been applied in many fields, including engineering and the medical sciences. In the pharmaceutical field, approval of the first 3D-printed tablet by the U.S. Food and Drug Administration in 2015 has attracted interest in the manufacture
R Hernández-Córdova et al.
Journal of biomedical materials research. Part A, 104(8), 1912-1921 (2016-03-19)
Biomaterial scaffolds are a key part of cardiac tissue engineering therapies. The group has recently synthesized a novel polycaprolactone based polyurethane-urea copolymer that showed improved mechanical properties compared with its previously published counterparts. The aim of this study was to
Soumyaranjan Mohanty et al.
Materials science & engineering. C, Materials for biological applications, 55, 569-578 (2015-06-29)
One of the major challenges in producing large scale engineered tissue is the lack of ability to create large highly perfused scaffolds in which cells can grow at a high cell density and viability. Here, we explore 3D printed polyvinyl

Nossa equipe de cientistas tem experiência em todas as áreas de pesquisa, incluindo Life Sciences, ciência de materiais, síntese química, cromatografia, química analítica e muitas outras.

Entre em contato com a assistência técnica