Accéder au contenu
Merck
  • Genetic manipulation of the ghrelin signaling system in male mice reveals bone compartment specificity of acylated and unacylated ghrelin in the regulation of bone remodeling.

Genetic manipulation of the ghrelin signaling system in male mice reveals bone compartment specificity of acylated and unacylated ghrelin in the regulation of bone remodeling.

Endocrinology (2014-07-26)
Patric J D Delhanty, Martijn van der Velde, Bram C J van der Eerden, Yuxiang Sun, Julia M M Geminn, Aart-Jan van der Lely, Roy G Smith, Johannes P T M van Leeuwen
RÉSUMÉ

Ghrelin receptor-deficient (Ghsr-/-) mice that lack acylated ghrelin (AG) signaling retain a metabolic response to unacylated ghrelin (UAG). Recently, we showed that Ghsr-deficiency affects bone metabolism. The aim of this study was to further establish the impact of AG and UAG on bone metabolism. We compared bone metabolism in Ghsr-/- (lacking only AG signaling) and ghrelin-deficient (Ghrl-/-; both AG and UAG deficient) male mice. Ghrl-/- mice had lower cortical bone mass, whereas Ghsr-/- mice had lower trabecular bone mass. This demonstrates bone compartment-specific effects of AG and a role for UAG in bone metabolism. Also, Ghrl-/- but not Ghsr-/- mice had increased bone formation rate and increased osteogenic stem cell numbers in their bone marrow. In ex vivo bone marrow cultures both AG and UAG inhibited osteoblast differentiation. This indicated that bone resorption must be increased in these mice. Accordingly, osteoclastogenesis rate was faster in bone marrow cultures from Ghsr-/- and Ghrl-/- mice, and osteoclast formation was inhibited by AG signaling and partially suppressed by UAG. In osteoblast cultures, AG markedly induced osteoprotegerin gene expression and both peptides reduced RANKL/osteoprotegerin ratio. These data describe unique cell-type specific effects of AG and UAG within a single tissue, supporting a tight and complex control of bone formation and resorption as well as a link between nutrition and bone metabolism. The balance between AG and UAG actions in the bone marrow may lead to bone compartmental-specific effects.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
L-acide ascorbique, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
L-acide ascorbique, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
Méthacrylate de méthyle, contains ≤30 ppm MEHQ as inhibitor, 99%
Sigma-Aldrich
L-acide ascorbique, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
L-acide ascorbique, reagent grade, crystalline
USP
Acide ascorbique, United States Pharmacopeia (USP) Reference Standard
Supelco
L-acide ascorbique, analytical standard
Sigma-Aldrich
Hematoxylin
Sigma-Aldrich
L-acide ascorbique, reagent grade
Sigma-Aldrich
L-acide ascorbique, meets USP testing specifications
Sigma-Aldrich
Méthacrylate de méthyle, 99%, stabilized
Sigma-Aldrich
L-acide ascorbique, 99%
Sigma-Aldrich
L-acide ascorbique, FCC, FG
Supelco
L-acide ascorbique, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
L-acide ascorbique, BioUltra, ≥99.5% (RT)
Sigma-Aldrich
L-acide ascorbique, ACS reagent, ≥99%
Sigma-Aldrich
Hematoxylin, certified by the Biological Stain Commission
Sigma-Aldrich
L-acide ascorbique, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Sigma-Aldrich
Ser-Phe-Leu-Leu-Arg-Asn-Pro-Asn-Asp-Lys-Tyr-Glu-Pro-Phe, ≥97% (HPLC)
L-acide ascorbique, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
L-acide ascorbique, puriss. p.a., ≥99.0% (RT)
Sigma-Aldrich
L-acide ascorbique, tested according to Ph. Eur.
Amphotericin B, European Pharmacopoeia (EP) Reference Standard
Supelco
L-acide ascorbique, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Méthacrylate de méthyle, European Pharmacopoeia (EP) Reference Standard