Accéder au contenu
Merck

In vitro biosafety profile evaluation of multipotent mesenchymal stem cells derived from the bone marrow of sarcoma patients.

Journal of translational medicine (2014-04-11)
Enrico Lucarelli, Chiara Bellotti, Melissa Mantelli, Maria Antonietta Avanzini, Rita Maccario, Francesca Novara, Giulia Arrigo, Orsetta Zuffardi, Monia Zuntini, Martina Pandolfi, Luca Sangiorgi, Daniela Lisini, Davide Donati, Serena Duchi
RÉSUMÉ

In osteosarcoma (OS) and most Ewing sarcoma (EWS) patients, the primary tumor originates in the bone. Although tumor resection surgery is commonly used to treat these diseases, it frequently leaves massive bone defects that are particularly difficult to be treated. Due to the therapeutic potential of mesenchymal stem cells (MSCs), OS and EWS patients could benefit from an autologous MSCs-based bone reconstruction. However, safety concerns regarding the in vitro expansion of bone marrow-derived MSCs have been raised. To investigate the possible oncogenic potential of MSCs from OS or EWS patients (MSC-SAR) after expansion, this study focused on a biosafety assessment of MSC-SAR obtained after short- and long-term cultivation compared with MSCs from healthy donors (MSC-CTRL). We initially characterized the morphology, immunophenotype, and differentiation multipotency of isolated MSC-SAR. MSC-SAR and MSC-CTRL were subsequently expanded under identical culture conditions. Cells at the early (P3/P4) and late (P10) passages were collected for the in vitro analyses including: sequencing of genes frequently mutated in OS and EWS, evaluation of telomerase activity, assessment of the gene expression profile and activity of major cancer pathways, cytogenetic analysis on synchronous MSCs, and molecular karyotyping using a comparative genomic hybridization (CGH) array. MSC-SAR displayed comparable morphology, immunophenotype, proliferation rate, differentiation potential, and telomerase activity to MSC-CTRL. Both cell types displayed signs of senescence in the late stages of culture with no relevant changes in cancer gene expression. However, cytogenetic analysis detected chromosomal anomalies in the early and late stages of MSC-SAR and MSC-CTRL after culture. Our results demonstrated that the in vitro expansion of MSCs does not influence or favor malignant transformation since MSC-SAR were not more prone than MSC-CTRL to deleterious changes during culture. However, the presence of chromosomal aberrations supports rigorous phenotypic, functional and genetic evaluation of the biosafety of MSCs, which is important for clinical applications.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Dexaméthasone, powder, BioReagent, suitable for cell culture, ≥97%
Sigma-Aldrich
3-Isobutyl-1-méthylxanthine, ≥99% (HPLC), powder
Sigma-Aldrich
L-acide ascorbique, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
L-acide ascorbique, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
3-Isobutyl-1-méthylxanthine, ≥99%, BioUltra
Sigma-Aldrich
L-acide ascorbique, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
Dexaméthasone, ≥98% (HPLC), powder
Sigma-Aldrich
L-acide ascorbique, reagent grade, crystalline
Sigma-Aldrich
Indomethacin, 98.5-100.5% (in accordance with EP)
USP
Acide ascorbique, United States Pharmacopeia (USP) Reference Standard
Supelco
L-acide ascorbique, analytical standard
Sigma-Aldrich
L-acide ascorbique, reagent grade
Sigma-Aldrich
L-acide ascorbique, 99%
Sigma-Aldrich
L-acide ascorbique, meets USP testing specifications
Supelco
L-acide ascorbique, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Dexaméthasone, powder, γ-irradiated, BioXtra, suitable for cell culture, ≥80% (HPLC)
Sigma-Aldrich
L-acide ascorbique, FCC, FG
Sigma-Aldrich
L-acide ascorbique, ACS reagent, ≥99%
Sigma-Aldrich
L-acide ascorbique, BioUltra, ≥99.5% (RT)
USP
Dexaméthasone, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Indomethacin, meets USP testing specifications
Supelco
Dexaméthasone, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
L-acide ascorbique, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Supelco
Indomethacin, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Dexaméthasone, meets USP testing specifications
Sigma-Aldrich
Alizarin, Dye content 97 %
L-acide ascorbique, European Pharmacopoeia (EP) Reference Standard
USP
Indomethacin, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
L-acide ascorbique, tested according to Ph. Eur.
Supelco
L-acide ascorbique, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland