Accéder au contenu
Merck
  • Balancing the rates of new bone formation and polymer degradation enhances healing of weight-bearing allograft/polyurethane composites in rabbit femoral defects.

Balancing the rates of new bone formation and polymer degradation enhances healing of weight-bearing allograft/polyurethane composites in rabbit femoral defects.

Tissue engineering. Part A (2013-08-15)
Jerald E Dumas, Edna M Prieto, Katarzyna J Zienkiewicz, Teja Guda, Joseph C Wenke, Jesse Bible, Ginger E Holt, Scott A Guelcher
RÉSUMÉ

There is a compelling clinical need for bone grafts with initial bone-like mechanical properties that actively remodel for repair of weight-bearing bone defects, such as fractures of the tibial plateau and vertebrae. However, there is a paucity of studies investigating remodeling of weight-bearing bone grafts in preclinical models, and consequently there is limited understanding of the mechanisms by which these grafts remodel in vivo. In this study, we investigated the effects of the rates of new bone formation, matrix resorption, and polymer degradation on healing of settable weight-bearing polyurethane/allograft composites in a rabbit femoral condyle defect model. The grafts induced progressive healing in vivo, as evidenced by an increase in new bone formation, as well as a decrease in residual allograft and polymer from 6 to 12 weeks. However, the mismatch between the rates of autocatalytic polymer degradation and zero-order (independent of time) new bone formation resulted in incomplete healing in the interior of the composite. Augmentation of the grafts with recombinant human bone morphogenetic protein-2 not only increased the rate of new bone formation, but also altered the degradation mechanism of the polymer to approximate a zero-order process. The consequent matching of the rates of new bone formation and polymer degradation resulted in more extensive healing at later time points in all regions of the graft. These observations underscore the importance of balancing the rates of new bone formation and degradation to promote healing of settable weight-bearing bone grafts that maintain bone-like strength, while actively remodeling.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Acétonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acide trifluoroacétique, suitable for HPLC, ≥99.0%
Sigma-Aldrich
Acide trifluoroacétique, ReagentPlus®, 99%
Sigma-Aldrich
Acétonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Hydroxyde de potassium, ACS reagent, ≥85%, pellets
Sigma-Aldrich
Acide trifluoroacétique, puriss. p.a., suitable for HPLC, ≥99.0% (GC)
Sigma-Aldrich
Hydroxyde de potassium, reagent grade, 90%, flakes
Sigma-Aldrich
Acétonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acétonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Hydroxyde de potassium solution, 45 wt. % in H2O
Sigma-Aldrich
Hydroxyde de potassium, semiconductor grade, pellets, 99.99% trace metals basis (Purity excludes sodium content.)
Supelco
Hydroxyde de potassium solution, volumetric, 8.0 M KOH (8.0N)
Sigma-Aldrich
Acide trifluoroacétique, ≥99%, for protein sequencing
Sigma-Aldrich
Hydroxyde de potassium, ≥85% KOH basis, pellets, white
Sigma-Aldrich
Hydroxyde de potassium, BioXtra, ≥85% KOH basis
Sigma-Aldrich
Hydroxyde de potassium, technical, ≥85%, powder
Sigma-Aldrich
Acétonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Dabco® 33-LV
Sigma-Aldrich
Hydroxyde de potassium, anhydrous, ≥99.95% trace metals basis
Sigma-Aldrich
Acétonitrile, anhydrous, 99.8%
USP
Tréhalose, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acétonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Acétonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Acétonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
1,4-Diazabicyclo[2.2.2]octane, ReagentPlus®, ≥99%
Supelco
Acétonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard
Supelco
Hydroxyde de potassium solution, 0.1 M KOH in water (0.1N), Eluent concentrate for IC
Supelco
Acide trifluoroacétique, analytical standard
Supelco
D-(+)-Tréhalose dihydrate, Pharmaceutical Secondary Standard; Certified Reference Material