Accéder au contenu
Merck

[Metabolic engineering of yeast Hansenula polymorpha for construction of efficient ethanol producers].

TSitologiia i genetika (2014-01-21)
K V Dmitruk, A A Sibirnyĭ
RÉSUMÉ

Until recently, the methylotrophic yeast was not considered as a potential producer of biofuels, particularly of ethanol from lignocellulosic hydrolysates. The first work published 10 years ago reveals the ability of thermotolerant methylotrophic yeast Hansenula polymorpha to ferment xylose--one of the main sugars of lignocellulosic hydrolysates, which has made these yeast promising organism for high temperature alcoholic fermentation. Such feature of the H. polymorpha can be used in the implementation of potentially effective process of simultaneous saccharification and fermentation (SSF) of raw materials. SSF allows combining enzymatic hydrolysis of raw materials with the conversion of produced sugars into ethanol: enzymes hydrolyze polysaccharides to monomers, which are immediately consumed by microorganisms-producers of ethanol. However, the efficiency of alcoholic fermentation of major sugars realized after hydrolysis of lignocellulosic raw materials, and especially xylose, by wild strains of H. polymorpha requires significant improvement. In this review the main results of metabolic engineering of H. polymorpha for the construction of improved producers of ethanol from xylose, starch, xylan, and glycerol, as well as strains with increased tolerance to high temperature and ethanol are represented.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Glycérol, ACS reagent, ≥99.5%
Sigma-Aldrich
Glycérol, for molecular biology, ≥99.0%
Sigma-Aldrich
Glycérol, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
Glycérol solution, 83.5-89.5% (T)
Sigma-Aldrich
Glycérol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Glycérol, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Glycérol, FCC, FG
Supelco
Ethanol solution, 50 mg/dL in H2O, ampule of 10 × 1.2 mL, certified reference material, Cerilliant®
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Glycérol, ≥99.5%
Supelco
Ethanol solution, 80 mg/dL in H2O, ampule of 10 × 1.2 mL, certified reference material, Cerilliant®
Supelco
Ethanol solution, 500 mg/dL in H2O, ampule of 10 × 1.2 mL, certified reference material, Cerilliant®
Supelco
Ethanol solution, 100 mg/dL in H2O, ampule of 10 × 1.2 mL, certified reference material, Cerilliant®
Supelco
Ethanol solution, 300 mg/dL in H2O, ampule of 10 × 1.2 mL, certified reference material, Cerilliant®
Sigma-Aldrich
Trehalase from porcine kidney, buffered aqueous glycerol solution, ≥1.0 units/mg protein
Supelco
Ethanol solution, 150 mg/dL in H2O, ampule of 10 × 1.2 mL, certified reference material, Cerilliant®
Supelco
Ethanol solution, 200 mg/dL in H2O, ampule of 10 × 1.2 mL, certified reference material, Cerilliant®
Sigma-Aldrich
Glycérol, BioXtra, ≥99% (GC)
Sigma-Aldrich
Starch, puriss. p.a., from potato, reag. ISO, reag. Ph. Eur., soluble
Sigma-Aldrich
Starch from potato, Soluble
Sigma-Aldrich
Glycérine, meets USP testing specifications
Sigma-Aldrich
Reagent Alcohol, anhydrous, ≤0.003% water
Sigma-Aldrich
Starch from corn
Supelco
Glycérol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Starch from potato, Powder
Sigma-Aldrich
Starch from corn, practical grade
Sigma-Aldrich
Amidon from rice
Sigma-Aldrich
Starch, from potato, tested according to Ph. Eur.
Sigma-Aldrich
Glycérol, tested according to Ph. Eur., anhydrous