Accéder au contenu
Merck
Toutes les photos(2)

Documents

805904

Sigma-Aldrich

Phenethylammonium iodide

greener alternative

Synonyme(s) :

Greatcell Solar®, Phenethylamine hydriodide

Se connecterpour consulter vos tarifs contractuels et ceux de votre entreprise/organisme


About This Item

Formule empirique (notation de Hill):
C8H12IN
Poids moléculaire :
249.09
Code UNSPSC :
12352101
ID de substance PubChem :
Nomenclature NACRES :
NA.23

Description

Elemental Analysis: ~38.5% C, ~5.6% N

Niveau de qualité

Pureté

98%

Forme

powder

Caractéristiques du produit alternatif plus écologique

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

Pf

283 °C

Autre catégorie plus écologique

Chaîne SMILES 

[H][N+]([H])([H])CCC1=CC=CC=C1.[I-]

InChI

1S/C8H11N.HI/c9-7-6-8-4-2-1-3-5-8;/h1-5H,6-7,9H2;1H

Clé InChI

UPHCENSIMPJEIS-UHFFFAOYSA-N

Description générale

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Click here for more details.

Application

The iodide and bromide based alkylated halides find applications as precursors for fabrication of perovskites for photovoltaic applications.

Informations légales

Product of Greatcell Solar Materials Pty Ltd.
Greatcell Solar® is a registered trademark of Greatcell Solar Materials Pty Ltd
Greatcell Solar is a registered trademark of Greatcell Solar

Pictogrammes

Exclamation mark

Mention d'avertissement

Warning

Mentions de danger

Classification des risques

Acute Tox. 4 Oral - Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

Organes cibles

Respiratory system

Code de la classe de stockage

11 - Combustible Solids

Classe de danger pour l'eau (WGK)

WGK 3

Point d'éclair (°F)

Not applicable

Point d'éclair (°C)

Not applicable


Certificats d'analyse (COA)

Recherchez un Certificats d'analyse (COA) en saisissant le numéro de lot du produit. Les numéros de lot figurent sur l'étiquette du produit après les mots "Lot" ou "Batch".

Déjà en possession de ce produit ?

Retrouvez la documentation relative aux produits que vous avez récemment achetés dans la Bibliothèque de documents.

Consulter la Bibliothèque de documents

Les clients ont également consulté

Huihui Zhu et al.
ACS nano, 13(4), 3971-3981 (2019-03-08)
Although organic-inorganic halide perovskites continue to generate considerable interest due to great potentials for various optoelectronic devices, there are some critical obstacles to practical applications, including lead toxicity, relatively low field-effect mobility, and strong hysteresis during operation. This paper proposes
Yudi Tu et al.
Small (Weinheim an der Bergstrasse, Germany), 16(52), e2005626-e2005626 (2020-12-08)
For next-generation Internet-of-Everything applications, for example, artificial-neural-network image sensors, artificial retina, visible light communication, on-chip light interconnection, and flexible devices, etc., high-performance microscale photodetectors are in urgent demands. 2D material (2DM) photodetectors have been researched and demonstrated impressive performances. However
Sampson Adjokatse et al.
Nanoscale, 11(13), 5989-5997 (2019-03-16)
Formamidinium lead iodide (FAPbI3) is one of the most extensively studied perovskite materials due to its narrow band gap and high absorption coefficient, which makes it highly suitable for optoelectronic applications. Deposition of a solution containing lead iodide (PbI2) and
Olivia F Williams et al.
The journal of physical chemistry. A, 123(51), 11012-11021 (2019-11-16)
Two-dimensional (2D) hybrid perovskites are generating broad scientific interest because of their potential for use in photovoltaics and microcavity lasers. It has recently been demonstrated that mixtures of quantum wells with different thicknesses can be assembled in films with heterogeneous
Gaoxiang Wang et al.
ACS applied materials & interfaces, 12(6), 7690-7700 (2020-01-22)
Despite the rocketing rise in power conversion efficiencies (PCEs), the performance of perovskite solar cells (PSCs) is still limited by the carrier transfer loss at the interface between perovskite (PVSK) absorbers and charge transporting layers. Here, we propose a novel

Articles

A brief tutorial on alternative energy materials for advanced batteries and fuel cells, as well as high-purity inorganics, conducting polymers, and electrolytes.

Next generation solar cells have the potential to achieve conversion efficiencies beyond the Shockley-Queisser (S-Q) limit while also significantly lowering production costs.

Dr. Perini and Professor Correa-Baena discuss the latest research and effort to obtain higher performance and stability of perovskite materials.

For several decades, the need for an environmentally sustainable and commercially viable source of energy has driven extensive research aimed at achieving high efficiency power generation systems that can be manufactured at low cost.

Notre équipe de scientifiques dispose d'une expérience dans tous les secteurs de la recherche, notamment en sciences de la vie, science des matériaux, synthèse chimique, chromatographie, analyse et dans de nombreux autres domaines..

Contacter notre Service technique