Direkt zum Inhalt
Merck
  • Characterizing the impact of traffic and the built environment on near-road ultrafine particle and black carbon concentrations.

Characterizing the impact of traffic and the built environment on near-road ultrafine particle and black carbon concentrations.

Environmental research (2014-05-20)
Scott Weichenthal, William Farrell, Mark Goldberg, Lawrence Joseph, Marianne Hatzopoulou
ZUSAMMENFASSUNG

Increasing evidence suggests that ultrafine particles (UFPs) may contribute to cardiorespiratory morbidity. We examined the relationship between near road UFPs and several traffic and built environment factors to identify predictors that may be used to estimate exposures in population-based studies. Black carbon (BC) was also examined. Data were collected on up to 6 occasions at 73 sites in Montreal, Canada over 6-week period during summer, 2012. After excluding highly correlated variables, road width, truck ratio (trucks/total traffic), building height, land zoning parameters, and meteorological factors were evaluated. Random-effect models were used to estimate percent changes in UFP and BC concentrations with interquartile changes in each candidate predictor adjusted for meteorological factors. Mean pollutant concentrations varied substantially across sites (UFP range: 1977-94, 798 particles/cm(3); BC range: 29-9460 ng/m(3)). After adjusting for meteorology, interquartile increases in road width (14%, 95% CI: 0, 30), building height (13%, 95% CI: 5, 22), and truck ratio (13%, 95% CI: 3, 23) were the most important predictors of mean UFP concentrations. Road width (28%, 95% CI: 9, 51) and industrial zoning (18%, 95% CI: 2, 37) were the strongest predictors of maximum UFP concentrations. Industrial zoning (35%, 95% CI: 9, 67) was the strongest predictor of BC. A number of traffic and built environmental factors were identified as important predictors of near road UFP and BC concentrations. Exposure models incorporating these factors may be useful in evaluating the health effects of traffic related air pollution.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Aktivkohle, DARCO®, −100 mesh particle size, powder
Sigma-Aldrich
Aktivkohle, powder, -100 particle size (mesh), decolorizing
Sigma-Aldrich
Aktivkohle, DARCO®, 20-40 mesh particle size, granular
Sigma-Aldrich
Aktivkohle-Norit®, Norit® PK 1-3, from peat, steam activated, granular
Sigma-Aldrich
Aktivkohle, untreated, granular, ≤5 mm
Sigma-Aldrich
Kohlenstoff, glassy, spherical powder, 2-12 μm, 99.95% trace metals basis
Sigma-Aldrich
Aktivkohle, DARCO®, 4-12 mesh particle size, granular
Sigma-Aldrich
Aktivkohle, acid-washed with hydrochloric acid
Sigma-Aldrich
Aktivkohle-Norit®, Norit® GAC 1240W, from coal, for potable water processing, steam activated, granular
Supelco
Aktivkohle, powder
Sigma-Aldrich
Kohlenstoff, nanopowder, <100 nm particle size (TEM)
Sigma-Aldrich
Aktivkohle, DARCO®, 12-20 mesh, granular
Sigma-Aldrich
Aktivkohle, meets USP testing specifications
Sigma-Aldrich
Aktivkohle, untreated, granular, 8-20 mesh
Sigma-Aldrich
Aktivkohle-Norit®, Norit® RB3, for gas purification, steam activated, rod
Supelco
Aktivkohle, puriss. p.a., powder
Sigma-Aldrich
Aktivkohle-Norit®, Norit® SX2, powder, from peat, multi-purpose activated charcoal, steam activated and acid washed
Sigma-Aldrich
Aktivkohle-Norit®, Norit® CA1, wood, chemically activated, powder
Sigma-Aldrich
Aktivkohle, untreated, granular, 20-60 mesh
Sigma-Aldrich
Aktivkohle, suitable for cell culture, suitable for plant cell culture
Carbon - Vitreous, rod, 100mm, diameter 5.0mm, glassy carbon
Millipore
Aktivkohle, suitable for GC
Carbon - Vitreous, foam, 150x150mm, thickness 2.5mm, bulk density 0.05g/cm3, porosity 96.5%
Supelco
Aktivkohle-Norit®, Norit® RBAA-3, rod
Kohlenstoff, foil, 5x5mm, thickness 2.0mm, hOpg
Carbon - Vitreous, foil, 25x25mm, thickness 0.5mm, glassy carbon
Kohlenstoff, foil, 100x100mm, thickness 0.5mm, flexible graphite, 99.8%
Kohlenstoff, foil, 10x10mm, thickness 2.0mm, hOpg
Kohlenstoff, rod, 150mm, diameter 2.0mm, graphite, 100%
Supelco
Aktivkohle, for the determination of AOX, 50-150 μm particle size