Direkt zum Inhalt
Merck

Advances in nanopore sequencing technology.

Journal of nanoscience and nanotechnology (2013-08-02)
Yongqiang Yang, Ruoyu Liu, Haiqiang Xie, Yanting Hui, Rengang Jiao, Yu Gong, Yiyu Zhang
ZUSAMMENFASSUNG

Much tremendous break through have been obtained in recent years for nanopore sequencing to achieve the goal of $1000 genome. As a method of single molecule sequencing, nanopore sequencing can discriminate the individual molecules of the target DNA strand rapidly due to the current blockages by translocating the nucleotides through a nano-scale pore. Both the protein-pores and solid-state nanopore channels which called single nanopore sequencing have been studied widely for the application of nanopore sequencing technology. This review will give a detail representation to protein nanopore and solid-state nanopore sequencing. For protein nanopore sequencing technology, we will introduce different nanopore types, device assembly and some challenges still exist at present. We will focus on more research fields for solid-state nanopore sequencing in terms of materials, device assembly, fabricated methods, translocation process and some specific challenges. The review also covers some of the technical advances in the union nanopore sequencing, which include nanopore sequencing combine with exonuclease, hybridization, synthesis and design polymer.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Desoxyribonukleinsäure, einsträngig aus Lachshoden, For hybridization
Sigma-Aldrich
Desoxyribonukleinsäure, einsträngig aus Lachshoden, For hybridization
Sigma-Aldrich
Desoxyribonukleinsäure Natriumsalz aus Heringshoden, Type XIV
Sigma-Aldrich
Plasmid DNA from E. coli RRI, pUC19, buffered aqueous solution
Sigma-Aldrich
Desoxyribonukleinsäure aus menschlicher Placenta, buffered aqueous solution, sexed, female
Sigma-Aldrich
Plasmid DNA from E. coli RRI, pUC18, buffered aqueous solution