Direkt zum Inhalt
Merck
  • Sodium nitrite-mediated killing of the major cystic fibrosis pathogens Pseudomonas aeruginosa, Staphylococcus aureus, and Burkholderia cepacia under anaerobic planktonic and biofilm conditions.

Sodium nitrite-mediated killing of the major cystic fibrosis pathogens Pseudomonas aeruginosa, Staphylococcus aureus, and Burkholderia cepacia under anaerobic planktonic and biofilm conditions.

Antimicrobial agents and chemotherapy (2010-08-11)
Tiffany A Major, Warunya Panmanee, Joel E Mortensen, Larry D Gray, Niel Hoglen, Daniel J Hassett
ZUSAMMENFASSUNG

A hallmark of airways in patients with cystic fibrosis (CF) is highly refractory, chronic infections by several opportunistic bacterial pathogens. A recent study demonstrated that acidified sodium nitrite (A-NO(2)(-)) killed the highly refractory mucoid form of Pseudomonas aeruginosa, a pathogen that significantly compromises lung function in CF patients (S. S. Yoon et al., J. Clin. Invest. 116:436-446, 2006). Therefore, the microbicidal activity of A-NO(2)(-) (pH 6.5) against the following three major CF pathogens was assessed: P. aeruginosa (a mucoid, mucA22 mutant and a sequenced nonmucoid strain, PAO1), Staphylococcus aureus USA300 (methicillin resistant), and Burkholderia cepacia, a notoriously antibiotic-resistant organism. Under planktonic, anaerobic conditions, growth of all strains except for P. aeruginosa PAO1 was inhibited by 7.24 mM (512 μg ml(-1) NO(2)(-)). B. cepacia was particularly sensitive to low concentrations of A-NO(2)(-) (1.81 mM) under planktonic conditions. In antibiotic-resistant communities known as biofilms, which are reminiscent of end-stage CF airway disease, A-NO(2)(-) killed mucoid P. aeruginosa, S. aureus, and B. cepacia; 1 to 2 logs of cells were killed after a 2-day incubation with a single dose of ∼15 mM A-NO(2)(-). Animal toxicology and phase I human trials indicate that these bactericidal levels of A-NO(2)(-) can be easily attained by aerosolization. Thus, in summary, we demonstrate that A-NO(2)(-) is very effective at killing these important CF pathogens and could be effective in other infectious settings, particularly under anaerobic conditions where bacterial defenses against the reduction product of A-NO(2)(-), nitric oxide (NO), are dramatically reduced.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Natriumnitrit, ACS reagent, ≥97.0%
Sigma-Aldrich
Natriumnitrit, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Natriumnitrit, 99.999% trace metals basis
Sigma-Aldrich
Natriumnitrit -Lösung
Supelco
Nitrit Ionen-Standardlösung, 0.1 M NO2-, for ion-selective electrodes
Sigma-Aldrich
Natriumnitrit, anhydrous, Redi-Dri, ReagentPlus®, ≥99.0%