Recommended Products
form
powder
Quality Level
greener alternative product characteristics
Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.
sustainability
Greener Alternative Product
particle size
−80 mesh
greener alternative category
SMILES string
[Li+].[Li+].[O-][Ti]([O-])=O
InChI
1S/2Li.3O.Ti/q2*+1;;2*-1;
InChI key
GLUCAHCCJMJHGV-UHFFFAOYSA-N
Related Categories
General description
Lithium titanate (LTO) (-80 mesh) is a class of electrode material that can be used in the fabrication of lithium-ion batteries. Lithium-ion batteries consist of anode, cathode, and electrolyte with a charge-discharge cycle. These materials enable the formation of greener and sustainable batteries for electrical energy storage.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Find details here.
Application
Lithium titanate (LTO) can be used as an anode material, which shows an ion conductivity of 10−3 Scm−1 at room temperature. It can also be used as an alternative to conventional graphite materials. LTO can further be used in the fabrication of high-performance lithium-ion batteries for electric vehicles (EVs).
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Personal Protective Equipment
dust mask type N95 (US), Eyeshields, Gloves
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
ACS applied materials & interfaces (2020-11-18)
Electrode materials with a high performance and stable cycling have been commercialized, but the utilization of state-of-the-art Li-ion batteries in high-current rate applications is restricted because of limitations in other battery components, in particular, the lack of an efficient binder.
ACS nano, 13(8), 9664-9672 (2019-07-19)
Solid-state electrolytes based on ionic liquids and a gelling matrix are promising for rechargeable lithium-ion batteries due to their safety under diverse operating conditions, favorable electrochemical and thermal properties, and wide processing compatibility. However, gel electrolytes also suffer from low
Motor control, 1-13 (2020-08-19)
This study describes an open data set of inertial, magnetic, foot-ground contact, and electromyographic signals from wearable sensors during walking at different speeds. These data were acquired from 22 healthy adults using wearable sensors and walking at self-selected comfortable, fast
Nanomaterials (Basel, Switzerland), 10(10) (2020-10-15)
Low dimensional Si-based materials are very promising anode candidates for the next-generation lithium-ion batteries. However, to satisfy the ever-increasing demand in more powerful energy storage devices, electrodes based on Si materials should display high-power accompanied with low volume change upon
Small (Weinheim an der Bergstrasse, Germany), 16(33), e2001391-e2001391 (2020-07-21)
The fast development of electrochemical energy storage devices necessitates rational design of the high-performance electrode materials and systematic and deep understanding of the intrinsic energy storage processes. Herein, the preintercalation general strategy of alkali ions (A = Li+ , Na+
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service