Skip to Content
Merck
  • Nanocomposite bone scaffolds based on biodegradable polymers and hydroxyapatite.

Nanocomposite bone scaffolds based on biodegradable polymers and hydroxyapatite.

Journal of biomedical materials research. Part A (2014-12-17)
Johannes Becker, Lichun Lu, M Brett Runge, Heng Zeng, Michael J Yaszemski, Mahrokh Dadsetan
ABSTRACT

In tissue engineering, development of an osteoconductive construct that integrates with host tissue remains a challenge. In this work, the effect of bone-like minerals on maturation of pre-osteoblast cells was investigated using polymer-mineral scaffolds composed of poly(propylene fumarate)-co-poly(caprolactone) (PPF-co-PCL) and nano-sized hydroxyapatite (HA). The HA of varying concentrations was added to an injectable formulation of PPF-co-PCL and the change in thermal and mechanical properties of the scaffolds was evaluated. No change in onset of degradation temperature was observed due to the addition of HA, however compressive and tensile moduli of copolymer changed significantly when HA amounts were increased in composite formulation. The change in mechanical properties of copolymer was found to correlate well to HA concentration in the constructs. Electron microscopy revealed mineral nucleation and a change in surface morphology and the presence of calcium and phosphate on surfaces was confirmed using energy dispersive X-ray analysis. To characterize the effect of mineral on attachment and maturation of pre-osteoblasts, W20-17 cells were seeded on HA/copolymer composites. We demonstrated that cells attached more to the surface of HA containing copolymers and their proliferation rate was significantly increased. Thus, these findings suggest that HA/PPF-co-PCL composite scaffolds are capable of inducing maturation of pre-osteoblasts and have the potential for use as scaffold in bone tissue engineering.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Germanium, chips, 99.999% trace metals basis
Sigma-Aldrich
Germanium, powder, −100 mesh, ≥99.999% trace metals basis
Sigma-Aldrich
Germanium, chips, 99.999% trace metals basis
Germanium, rod, 6mm, diameter 6.0mm, single crystal, 100%
Germanium, disks, 15mm, thickness 1.0mm, polycrystalline, 100%
Germanium, sheet, 25x25mm, thickness 1.0mm, polycrystalline, 99.999%
Germanium, disks, 20mm, thickness 1.0mm, single crystal, 100%
Germanium, microfoil, 25x25mm, thinness 0.25μm, specific density 166.3μg/cm2, 6 micron aluminum permanent support, 100%
Germanium, sheet, 10x10mm, thickness 0.5mm, single crystal, -111, 100%
Germanium, rod, 25mm, diameter 2.0mm, polycrystalline, n-type, 99.999%
Germanium, rod, 50mm, diameter 5mm, polycrystalline, n-type, 99.999%
Germanium, sheet, 10x10mm, thickness 0.25mm, polycrystalline, 99.999%
Germanium, sheet, 10x10mm, thickness 0.6mm, single crystal, -111, 100%
Germanium, microfoil, 50x50mm, thinness 0.25μm, specific density 166.3μg/cm2, 6 micron aluminum permanent support, 100%
Germanium, sheet, 50x50mm, thickness 1.0mm, polycrystalline, 99.999%
Germanium, microfoil, 25x25mm, thinness 0.5μm, specific density 333μg/cm2, 6 micron aluminum permanent support, 100%
Germanium, sheet, 50x50mm, thickness 3.0mm, polycrystalline, 99.999%
Germanium, rod, 25mm, diameter 5mm, polycrystalline, n-type, 99.999%
Germanium, sheet, 25x25mm, thickness 3.0mm, polycrystalline, 99.999%
Germanium, sheet, 6x6mm, thickness 1.0mm, polycrystalline, 99.999%
Germanium, sheet, 25x25mm, thickness 1.0mm, single crystal, 99.999%
Germanium, sheet, 7x24mm, thickness 1.0mm, polycrystalline, 99.999%
Germanium, sheet, 50x50mm, thickness 0.5mm, single crystal, 99.999%
Sigma-Aldrich
Germanium, powder, −100 mesh, ≥99.99% trace metals basis