Skip to Content
Merck
  • Exploration of alternate catalytic mechanisms and optimization strategies for retroaldolase design.

Exploration of alternate catalytic mechanisms and optimization strategies for retroaldolase design.

Journal of molecular biology (2013-10-29)
Sinisa Bjelic, Yakov Kipnis, Ling Wang, Zbigniew Pianowski, Sergey Vorobiev, Min Su, Jayaraman Seetharaman, Rong Xiao, Gregory Kornhaber, John F Hunt, Liang Tong, Donald Hilvert, David Baker
ABSTRACT

Designed retroaldolases have utilized a nucleophilic lysine to promote carbon-carbon bond cleavage of β-hydroxy-ketones via a covalent Schiff base intermediate. Previous computational designs have incorporated a water molecule to facilitate formation and breakdown of the carbinolamine intermediate to give the Schiff base and to function as a general acid/base. Here we investigate an alternative active-site design in which the catalytic water molecule was replaced by the side chain of a glutamic acid. Five out of seven designs expressed solubly and exhibited catalytic efficiencies similar to previously designed retroaldolases for the conversion of 4-hydroxy-4-(6-methoxy-2-naphthyl)-2-butanone to 6-methoxy-2-naphthaldehyde and acetone. After one round of site-directed saturation mutagenesis, improved variants of the two best designs, RA114 and RA117, exhibited among the highest kcat (>10(-3)s(-1)) and kcat/KM (11-25M(-1)s(-1)) values observed for retroaldolase designs prior to comprehensive directed evolution. In both cases, the >10(5)-fold rate accelerations that were achieved are within 1-3 orders of magnitude of the rate enhancements reported for the best catalysts for related reactions, including catalytic antibodies (kcat/kuncat=10(6) to 10(8)) and an extensively evolved computational design (kcat/kuncat>10(7)). The catalytic sites, revealed by X-ray structures of optimized versions of the two active designs, are in close agreement with the design models except for the catalytic lysine in RA114. We further improved the variants by computational remodeling of the loops and yeast display selection for reactivity of the catalytic lysine with a diketone probe, obtaining an additional order of magnitude enhancement in activity with both approaches.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetone, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetone, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Acetone, histological grade, ≥99.5%
Sigma-Aldrich
Acetone, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Acetone, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetone, puriss., meets analytical specification of Ph. Eur., BP, NF, ≥99% (GC)
Sigma-Aldrich
Acetone, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Supelco
Acetone, analytical standard
Sigma-Aldrich
Acetone, ≥99%, meets FCC analytical specifications
Sigma-Aldrich
Acetone, natural, ≥97%
Supelco
Acetone, Pharmaceutical Secondary Standard; Certified Reference Material
Nabumetone, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Aldolase from rabbit muscle, ammonium sulfate suspension, 10-20 units/mg protein
Sigma-Aldrich
Aldolase from rabbit muscle, lyophilized powder, ≥8.0 units/mg protein
Supelco
Nabumetone, analytical standard