as derivatization reagent in quantification of dopamine, serotonin and norepinephrine in human urine by solid phase microextraction-gas chromatography-triple quadrupole mass spectrometry[1]
in the preparation of dipropyl 3,6-diphenyl-1,2-dihydro-1,2,4,5-tetrazine-1,2-dicarboxylate[2]
Ecotoxicology and environmental safety, 172, 72-81 (2019-01-27)
Environmental exposure to the amino acid β-methylamino-L-alanine (BMAA) was linked to the high incidence of neurodegenerative disease first reported on the island of Guam in the 1940s and has more recently been implicated in an increased incidence of amyotrophic lateral
The title compound, C(22)H(24)N(4)O(4), was prepared from propyl chloroformate and 3,6-diphenyl-1,2-dihydro-s-tetrazine. This reaction yields the title compound rather than dipropyl 3,6-diphenyl-1,4-dihydro-s-tetrazine-1,4-dicarboxylate. The 2,3-diazabutadiene group in the central six-membered ring is not planar; the C=N double-bond length is 1.285 (2) A
An effective and simultaneous liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was used with the aim of quantifying monosodium glutamate (MSG) in foodstuffs, such as chips, taste cubes, sauces and soups. The results were linear (R
Chronic inhalation of aerosolized β-N-methylamino-L-alanine (BMAA) could serve as potenital route for exposure to this cyanobacterial neurotoxin implicated in the development of neurodegenerative disease. We investigated environmental aerosol BMAA loads and the fate of inhaled isotopically labeled aerosolized BMAA in
The emerging toxin β-methylamino-l-alanine (BMAA) has been linked to the development of a number of neurodegenerative diseases in humans including amyotrophic lateral sclerosis (ALS), Alzheimer's disease, and Parkinson's disease. BMAA has been found to be produced by a range of
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.