Skip to Content
MilliporeSigma
All Photos(1)

Key Documents

23320

Sigma-Aldrich

3-Chloroaniline

puriss., ≥99.0% (GC)

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
ClC6H4NH2
CAS Number:
Molecular Weight:
127.57
Beilstein/REAXYS Number:
605969
EC Number:
MDL number:
UNSPSC Code:
12352100
PubChem Substance ID:

vapor pressure

1 mmHg ( 63.5 °C)

grade

puriss.

assay

≥99.0% (GC)

refractive index

n20/D 1.594 (lit.)
n20/D 1.594

bp

95-96 °C/11 mmHg (lit.)

mp

−11-−9 °C (lit.)

density

1.206 g/mL at 25 °C (lit.)

SMILES string

Nc1cccc(Cl)c1

InChI

1S/C6H6ClN/c7-5-2-1-3-6(8)4-5/h1-4H,8H2

Inchi Key

PNPCRKVUWYDDST-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Other Notes

This product has been replaced by C22407-ALDRICH | 3-Chloroaniline 99%

signalword

Danger

Hazard Classifications

Acute Tox. 2 Inhalation - Acute Tox. 3 Dermal - Acute Tox. 3 Oral - Aquatic Acute 1 - Aquatic Chronic 1 - Eye Irrit. 2 - Skin Sens. 1B - STOT RE 2 Oral

target_organs

Endocrine system

Storage Class

6.1A - Combustible acute toxic Cat. 1 and 2 / very toxic hazardous materials

wgk_germany

WGK 2

flash_point_f

244.4 °F - closed cup

flash_point_c

118 °C - closed cup

ppe

Eyeshields, Faceshields, Gloves, type ABEK (EN14387) respirator filter


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

It looks like we've run into a problem, but you can still download Certificates of Analysis from our Documents section.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Nico Boon et al.
Environmental science & technology, 36(21), 4698-4704 (2002-11-16)
The survival and activity of microbial degradative inoculants in bioreactors is critical to obtain successful biodegradation of non- or slowly degradable pollutants. Achieving this in industrial wastewater reactors is technically challenging. We evaluated a strategy to obtain complete and stable
Nico Boon et al.
Applied and environmental microbiology, 69(3), 1511-1520 (2003-03-07)
Bioaugmentation of bioreactors focuses on the removal of xenobiotics, with little attention typically paid to the recovery of disrupted reactor functions such as ammonium-nitrogen removal. Chloroanilines are widely used in industry as a precursor to a variety of products and
Stephan Bathe et al.
Bioresource technology, 100(12), 2902-2909 (2009-03-10)
A bioaugmentation approach combining several strategies was applied to achieve degradation of 3-chloroaniline (3CA) in semicontinuous activated sludge reactors. In a first step, a 3CA-degrading Comamonas testosteroni strain carrying the degradative plasmid pNB2 was added to a biofilm reactor, and
J Alary et al.
Toxicology, 59(2), 211-223 (1989-12-01)
In order to investigate the various steps of chlorpropham (CIPC) metabolism which could be influenced by cadmium, isolated rat hepatocytes were incubated in the presence of CIPC (0.1 mM) and of increasing Cd concentrations (0-180 microM). The results showed that
G O Rankin et al.
Toxicology, 38(3), 269-283 (1986-03-01)
Aniline (A) and its monochlorophenyl derivatives (2-CA, 3-CA and 4-CA) are widely-used chemical intermediates. In the present study, the in vivo and in vitro nephrotoxic potential of these compounds was assessed in Fischer 344 rats. In the in vivo experiments

Questions

Reviews

No rating value

Active Filters

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service