Skip to Content
MilliporeSigma
All Photos(3)

Key Documents

448303

Sigma-Aldrich

16-Mercaptohexadecanoic acid

90%

Synonym(s):

MHDA

Sign Into View Organizational & Contract Pricing

Select a Size

1 G
$171.00
5 G
$516.00

$171.00


Available to ship onMay 01, 2025Details


Request a Bulk Order

Select a Size

Change View
1 G
$171.00
5 G
$516.00

About This Item

Linear Formula:
HS(CH2)15CO2H
CAS Number:
Molecular Weight:
288.49
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

$171.00


Available to ship onMay 01, 2025Details


Request a Bulk Order

Quality Level

assay

90%

form

solid

mp

65-69 °C

SMILES string

OC(=O)CCCCCCCCCCCCCCCS

InChI

1S/C16H32O2S/c17-16(18)14-12-10-8-6-4-2-1-3-5-7-9-11-13-15-19/h19H,1-15H2,(H,17,18)

InChI key

INOAASCWQMFJQA-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

16-Mercaptohexadecanoic acid (MHA) is a long chained alkanethiol which forms self-assembled monolayers (SAMs) on a variety of surfaces.[1]

Application

MHA forms SAMs on gold dipyramids which can be used in the fabrication of nanoresonators for shell-isolated nanoparticle enhanced raman spectroscopy (SHINERS).[1] It can also be used to surface modify gold electrodes that can be used for sensitive detection of clozapine.[2] Gold surfaces can be self-assembled with MHA by polymer pen lithography (PPL) which can be potentially used in bioengineering.[3]

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Gloves, type N95 (US)


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Large-area molecular patterning with polymer pen lithography.
Eichelsdoerfer DJ, et al.
Nature Protocols, 8(12), 2548-2548 (2013)
Landon J Brower et al.
Beilstein journal of nanotechnology, 8, 2307-2314 (2017-11-29)
Integration of surface-anchored metal-organic frameworks (surMOFs) within hierarchical architectures is necessary for potential sensing, electronic, optical, or separation applications. It is important to understand the fundamentals of film formation for these surMOFs in order to develop strategies for their incorporation
Andreas Mark et al.
Small (Weinheim an der Bergstrasse, Germany), 15(43), e1902976-e1902976 (2019-09-24)
The colloidal probe technique, which is based on the atomic force microscope, revolutionizes direct force measurements in many fields, such as interface science or biomechanics. It allows for the first time to determine interaction forces on the single particle or
Modification of surfaces of silver nanoparticles for controlled deposition of silicon, manganese, and titanium dioxides.
Abdulrahman HB, et al.
Applied Surface Science, 427, 334-339 (2018)
Tatiana Parra Vello et al.
Physical chemistry chemical physics : PCCP, 22(10), 5839-5846 (2020-02-29)
Surface-Mounted Metal-Organic Frameworks (SURMOFs) are promising materials with a wide range of applications and increasing interest in different technological fields. The use of SURMOFs as both the active and passive tail in electronic devices is one of the most exciting

Questions

Reviews

No rating value

Active Filters

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service