The hypothesis was tested that M2-selective antagonists partially utilize the allosteric site of muscarinic M2 receptors. The interactions of the allosteric agent W84 (hexane-1, 6-bis[dimethyl-3'-phthalimidopropyl-ammonium bromide]) were studied with the M2/M4-selective AF-DX 384 [(+/-)-5, 11-dihydro-11-([(2-(2-[(dipropylamino)methyl]-1-piperidinyl)ethyl)amino]carbonyl)-6H-pyrido(2,3-b)(1,4)-benzodiazepine-6-one], the nonselective N-methylscopolamine (NMS), and
Journal of molecular graphics, 14(4), 185-193 (1996-08-01)
Similarities in the molecular structure and surface properties of the allosteric modulators of muscarinic receptors, alcuronium, gallamine, tubocurarine, and the hexamethonium compound W84, a well-known pharmacological tool, are explored. The analysis of the molecular electrostatic potential (MEP) as well as
Naunyn-Schmiedeberg's archives of pharmacology, 357(4), 363-370 (1998-05-30)
Mg2+-ions have been suspected to attenuate the inhibitory effect of allosteric modulators on the dissociation of orthosteric ligands from muscarinic M2 receptors. It was aimed to gain more insight into the molecular events underlying the effect of Mg2+. The interaction
The bis-quaternary W84, hexamethylene-bis-[dimethyl-(3-phthalimidopropyl)-ammonium bromide], is a potent allosteric modulator of M2-cholinoceptors. In this study we aimed at quantifying its allosteric effect on the dissociation of [3H]pirenzepine from M1-cholinoceptors in rat cerebral cortex and to measure the effects on association
Naunyn-Schmiedeberg's archives of pharmacology, 372(4), 267-276 (2005-12-20)
Muscarinic acetylcholine receptors contain two distinct ligand binding sites, i.e. the orthosteric site for acetylcholine and other conventional ligands, and an allosteric site located at the entrance of the ligand binding pocket. We used a set of allosteric agents to
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.