Skip to Content
MilliporeSigma
All Photos(1)

Key Documents

SML2628

Sigma-Aldrich

NVP-BSK805 Trihydrochloride

≥98% (HPLC)

Synonym(s):

4-(2,6-Difluoro-4-(3-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)quinoxalin-5-yl)benzyl)morpholine trihydrochloride, 8-(3,5-Difluoro-4-morpholin-4-ylmethyl-phenyl)-2-(1-piperidin-4-yl-1H-pyrazol-4-yl)-quinoxaline trihydrochloride, 8-[3,5-Difluoro-4-(4-morpholinylmethyl)phenyl]-2-[1-(4-piperidinyl)-1H-pyrazol-4-yl]quinoxaline trihydrochloride, BSK 805 3HCl, BSK805, 3HCl, NVP-BSK 805 3HCl

Sign Into View Organizational & Contract Pricing

Select a Size

5 MG
$71.33
25 MG
$306.00

$71.33

List Price$75.80Save 6%

In StockDetails


Request a Bulk Order

Select a Size

Change View
5 MG
$71.33
25 MG
$306.00

About This Item

Empirical Formula (Hill Notation):
C27H28F2N6O·3HCl
CAS Number:
Molecular Weight:
599.93
MDL number:
UNSPSC Code:
12352200
NACRES:
NA.77

$71.33

List Price$75.80Save 6%

In StockDetails


Request a Bulk Order

assay

≥98% (HPLC)

form

powder

color

faint yellow to dark orange

solubility

H2O: 2 mg/mL, clear

storage temp.

−20°C

SMILES string

Fc1c(c(cc(c1)c3c4nc(cnc4ccc3)c5c[n](nc5)C6CCNCC6)F)CN2CCOCC2

InChI

1S/C27H28F2N6O/c28-23-12-18(13-24(29)22(23)17-34-8-10-36-11-9-34)21-2-1-3-25-27(21)33-26(15-31-25)19-14-32-35(16-19)20-4-6-30-7-5-20/h1-3,12-16,20,30H,4-11,17H2

InChI key

IBPVXAOOVUAOKJ-UHFFFAOYSA-N

Biochem/physiol Actions

NVP-BSK805 is a selective, ATP-competitive (Ki = 0.43 nM) Janus kinase 2 (JAK2) inhibitor (IC50 = 0.58 and 0.56 nM against full-length wild-type and V617F JAK2, respectively) with greatly reduced potency against TYK2, JAK3, JAK1 (IC50 = 10.76, 18.68, 31.63 nM against respective JAK homology domain 1) and >300-fold selectivity over a panel of 36 other kinases. BSK805 potently inhibits STAT5 phosphorylation (by >90% at 100 nM; MB-02 & SET-2 cells) and proliferation in JAK2V617F mutant cultures in vitro (GI50= 39-331 nM; 75% SET-2 growth inhibition at 150 nM) and in Ba/F3 JAK2V617F-bearing mice in vivo (150 mg/kg p.o.). BSK805 daily oral administration is also efficacious against rhEpo-induced splenomegaly and polycythemia in mice (50-100 mg/kg) and rats (25-50 mg/kg) with good pharmacokinetics and oral avilability.
Orally available, ATP-competitive Janus kinase 2 (JAK2) inhibitor with efficacy against JAK2V617F-driven leukemic disease in mice and rats in vivo.

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Alessia Bottos et al.
Nature communications, 7, 12258-12258 (2016-07-14)
The JAK/STAT pathway is an attractive target for breast cancer therapy due to its frequent activation, and clinical trials evaluating JAK inhibitors (JAKi) in advanced breast cancer are ongoing. Using patient biopsies and preclinical models of breast cancer, we demonstrate
M Thorn et al.
Cancer gene therapy, 23(6), 188-198 (2016-05-21)
Assumptions that liver immune cells and immunosuppressive pathways are similar to their counterparts in other spaces have led to gaps in our understanding of intrahepatic neoplasm aggressiveness. Myeloid-derived suppressor cells (MDSCs) are potent inhibitors of antitumor immunity and pose a
Andriy Marusyk et al.
Cancer research, 76(22), 6495-6506 (2016-11-05)
Using a three-dimensional coculture model, we identified significant subtype-specific changes in gene expression, metabolic, and therapeutic sensitivity profiles of breast cancer cells in contact with cancer-associated fibroblasts (CAF). CAF-induced gene expression signatures predicted clinical outcome and immune-related differences in the
Fabienne Baffert et al.
Molecular cancer therapeutics, 9(7), 1945-1955 (2010-07-01)
The recent discovery of an acquired activating point mutation in JAK2, substituting valine at amino acid position 617 for phenylalanine, has greatly improved our understanding of the molecular mechanism underlying chronic myeloproliferative neoplasms. Strikingly, the JAK2(V617F) mutation is found in
Carole Pissot-Soldermann et al.
Bioorganic & medicinal chemistry letters, 20(8), 2609-2613 (2010-03-17)
We have designed and synthesized a novel series of 2,8-diaryl-quinoxalines as Janus kinase 2 inhibitors. Many of the inhibitors show low nanomolar activity against JAK2 and potently suppress proliferation of SET-2 cells in vitro. In addition, compounds from this series

Questions

Reviews

No rating value

Active Filters

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service