SMIFH2 was used to decipher the role of mDia2 in controlling microtubule dynamics and myofibroblast differentiation.1
Biochem/physiol Actions
SMIFH2 is an inhibitor of formin homology 2 domains. The compound is a first small molecule inhibitor of formin-mediated actin assembly that disrupts formin dependent processes from yeast to mammals. SMIFH2 may be a useful drug for identifying cellular processes dependent on formin-mediated actin assembly in a broad range of experimental systems. Formin is an actin nucleation factor.
SMIFH2 is an inhibitor of formin-mediated actin assembly that disrupts formin dependent processes.
Cell migration in 3D microenvironments is a complex process which depends on the coordinated activity of leading edge protrusive force and rear retraction in a push-pull mechanism. While the potentiation of protrusions has been widely studied, the precise signalling and
The small molecular inhibitor of formin FH2 domains, SMIFH2, is widely used in cell biological studies. It inhibits formin-driven actin polymerization in vitro, but not polymerization of pure actin. It is active against several types of formin from different species.
The process of pollen germination is crucial for flowering plant reproduction, but the mechanisms through which pollen grains establish polarity and select germination sites are not well understood. In this study, we report that a formin family protein, AtFH5, is localized
Integrin engagement within the immune synapse enhances T cell activation, but our understanding of this process is incomplete. In response to T cell receptor (TCR) ligation, SLP-76 (LCP2), ADAP (FYB1) and SKAP55 (SKAP1) are recruited into microclusters and activate integrins
Molecular biology of the cell, 30(11), 1298-1313 (2019-03-21)
Fibroblasts transformed by the proto-oncogene Src form individual invadopodia that can spontaneously self-organize into large matrix-degrading superstructures called rosettes. However, the mechanisms by which the invadopodia can spatiotemporally reorganize their architecture is not well understood. Here, we show that Hic-5
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.