Skip to Content
MilliporeSigma
All Photos(2)

Documents

OGS3182

Sigma-Aldrich

PSF-OXB20-COOH-GST - C-TERMINAL GST TAG BACTERIAL PLASMID

plasmid vector for molecular cloning

Synonym(s):

cloning vector, expression vector, molecular cloning vector, plasmid, plasmid vector, snapfast vector, vector

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12352200
NACRES:
NA.85

recombinant

expressed in E. coli

tag

GST tagged

form

buffered aqueous solution

mol wt

size 4508 bp

bacteria selection

kanamycin

origin of replication

pUC (500 copies)

peptide cleavage

no cleavage

peptide tag location

C-terminal

promoter

Promoter name: OXB20
Promoter activity: constitutive
Promoter type: bacterial

reporter gene

none

shipped in

ambient

storage temp.

−20°C

General description

This plasmid is designed to express tagged proteins in E. coli. The plasmid contains a constitutive promoter (OXB20) derived from the region upstream of the E. coli RecA gene. It does not require induction or any additional components for activity. It is the strongest of the bacterial promoters that we provide and this high level of expression can cause expression problems with some proteins with poor solubility. For this reason we sell a range of bacterial promoters with different expression levels (OXB1(low)>OXB20(high)) that can be provided with the peptide tags in this plasmid on request.

About the Peptide Tag:This plasmid contains a c-terminal Glutathione-S-Transferase (GST) reporter tag that can be fused to a gene of interest to allow protein detection and/or purification. The sequence of the tag is:SPILGYWKIKGLVQPTRLLLEYLEEKYEEHLYERDEGDKWRNKKFELGLEFPNLPYYIDGDVKLTQSMAIIRYIADKHNMLGGCPKERAEISMLEGAVLDIRYGVSRIAYSKDFETLKVDFLSKLPEMLKMFEDRLCHKTYLNGDHVTHPDFMLYDALDVVLYMDPMCLDAFPKLVCFKKRIEAIPQIDKYLKSSKYIAWPLQGWQATFGGGDHPPKS.

About the Cleavage Tag:This plasmid does not contain a protease cleavage site.

Promoter Expression Level: This plasmid contains a constitutive bacterial promoter that does not require induction. It is the strongest bacterial promoter we sell and this can cause solubility and expression problems with some proteins. We also offer a range of other bacterial promoters that are compatible with this plasmid and are available on request.

Sequence

To view sequence information for this product, please visit the product page

Analysis Note

To view the Certificate of Analysis for this product, please visit www.oxgene.com

related product

Product No.
Description
Pricing

Storage Class

12 - Non Combustible Liquids

flash_point_f

Not applicable

flash_point_c

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Alexander C Cerny et al.
PLoS genetics, 11(10), e1005578-e1005578 (2015-10-29)
Recycling of signaling proteins is a common phenomenon in diverse signaling pathways. In photoreceptors of Drosophila, light absorption by rhodopsin triggers a phospholipase Cβ-mediated opening of the ion channels transient receptor potential (TRP) and TRP-like (TRPL) and generates the visual
Geoffrey M Lynn et al.
Nature biotechnology, 33(11), 1201-1210 (2015-10-27)
The efficacy of vaccine adjuvants such as Toll-like receptor agonists (TLRa) can be improved through formulation and delivery approaches. Here, we attached small molecule TLR-7/8a to polymer scaffolds (polymer-TLR-7/8a) and evaluated how different physicochemical properties of the TLR-7/8a and polymer
Diana Romero et al.
Carcinogenesis, 37(1), 18-29 (2015-10-28)
Dickkopf-3 (Dkk-3) is a secreted protein whose expression is downregulated in many types of cancer. Endogenous Dkk-3 is required for formation of acini in 3D cultures of prostate epithelial cells, where it inhibits transforming growth factor (TGF)-β/Smad signaling. Here, we
Jin-Gyoung Jung et al.
PLoS genetics, 10(10), e1004751-e1004751 (2014-10-31)
The Notch3 signaling pathway is thought to play a critical role in cancer development, as evidenced by the Notch3 amplification and rearrangement observed in human cancers. However, the molecular mechanism by which Notch3 signaling contributes to tumorigenesis is largely unknown.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service