Skip to Content
MilliporeSigma
All Photos(1)

Documents

C6154

Sigma-Aldrich

Z-Gln-Gly

γ-glutamyl donor substrate

Synonym(s):

N2-[(phenylmethoxy)carbonyl]-L-glutaminyl-glycine

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C15H19N3O6
CAS Number:
Molecular Weight:
337.33
MDL number:
UNSPSC Code:
12352209
PubChem Substance ID:
NACRES:
NA.26

form

powder

storage temp.

−20°C

SMILES string

NC(=O)CCC(NC(=O)OCc1ccccc1)C(=O)NCC(O)=O

InChI

1S/C15H19N3O6/c16-12(19)7-6-11(14(22)17-8-13(20)21)18-15(23)24-9-10-4-2-1-3-5-10/h1-5,11H,6-9H2,(H2,16,19)(H,17,22)(H,18,23)(H,20,21)

InChI key

SOUXAAOTONMPRY-UHFFFAOYSA-N

Amino Acid Sequence

Z-Gln-Gly

Application

γ-Glutamyl donor substrate used in spectrophotometric determination of transglutaminase (TGase) activity. Z-Gln-Gly was used to enzymatically synthesize N-linked neoglycoproteins.

Biochem/physiol Actions

N-Benzyloxycarbonyl-L-Glutaminylglycine (Z-Gln-Gly, Z-QG) is used as a substrate to differentiate and characterize transglutaminase(s) (TGase) that catalyzes the post-translational covalent cross-linking of Gln- and Lys-containing peptides. Z-QG supports glutamyl-level cross-linking applications thruough surface modification.

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Gloves, type N95 (US)


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Momoko Kitaoka et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 17(19), 5387-5392 (2011-04-07)
A new synthetic strategy for DNA-enzyme conjugates with a novel architecture was explored using a natural cross-linking catalyst, microbial transglutaminase (MTG). A glutamine-donor substrate peptide of MTG was introduced at the 5-position on the pyrimidine of deoxyuridine triphosphate to prepare
Syeda Warisul Fatima et al.
Bioresource technology, 287, 121391-121391 (2019-05-12)
This work studied the production of Transglutaminase (TGase) using wheat bran as carbon source. The medium components and culture conditions were optimized by statistical Box-Behnken response surface methodology. The release of active Transglutaminase was enhanced by adding (i) protease to
Evan A Wells et al.
Archives of biochemistry and biophysics, 643, 57-61 (2018-02-27)
The Ca2+-dependent deamidation and transamidation activities of transglutaminase 2 (TG2) are important to numerous physiological and pathological processes. Herein, we have examined the steady-state kinetics and 15(V/K) kinetic isotope effects (KIEs) for the TG2-catalyzed deamidation and transamidation of N-Benzyloxycarbonyl-l-Glutaminylglycine (Z-Gln-Gly)
Natalie M Rachel et al.
Protein science : a publication of the Protein Society, 26(11), 2268-2279 (2017-09-01)
Microbial transglutaminase (MTG) is a practical tool to enzymatically form isopeptide bonds between peptide or protein substrates. This natural approach to crosslinking the side-chains of reactive glutamine and lysine residues is solidly rooted in food and textile processing. More recently
Noriko Miwa et al.
Journal of bioscience and bioengineering, 127(3), 281-287 (2018-10-03)
A screening system using enrichment culture has been established with the aim of obtaining a novel enzyme for protein modification that has not been previously reported. This enzyme catalyzes deamidation of the side-chain amide group of asparagine in proteins. Enrichment

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service