Skip to Content
MilliporeSigma
All Photos(1)

Key Documents

88930

Sigma-Aldrich

Thionin acetate salt

for microscopy (Bact., Bot., Hist.)

Synonym(s):

3,7-Diamino-5-phenothiazinium acetate, Lauth’s violet

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C12H9N3S · C2H4O2
CAS Number:
Molecular Weight:
287.34
Colour Index Number:
52000
Beilstein/REAXYS Number:
4345073
MDL number:
UNSPSC Code:
12352200
PubChem Substance ID:
NACRES:
NA.25

grade

for microscopy (Bact., Bot., Hist.)

form

powder

technique(s)

titration: suitable

SMILES string

CC([O-])=O.Nc1ccc2nc3ccc(N)cc3[s+]c2c1

InChI

1S/C12H10N3S.C2H4O2/c13-7-1-3-9-11(5-7)16-12-6-8(14)2-4-10(12)15-9;1-2(3)4/h1-6H,13-14H2;1H3,(H,3,4)/q+1;/p-1

InChI key

OWXBIRAFHWASMS-UHFFFAOYSA-M

Looking for similar products? Visit Product Comparison Guide

Application

Thionine (Lauth′s violet), a metachromatic dye, is widely used as a biological stain of materials such as DNA. Thionine is being studied as an electron mediator in the development of microbial fuel cells and electrochemical biosensors.

Storage Class

13 - Non Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Gloves, type N95 (US)


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Ling Meng et al.
Biosensors & bioelectronics, 24(6), 1751-1756 (2008-10-24)
A glutamate biosensor based on the electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide (NADH), which was generated by the enzymatic reaction, was developed via employing a single-walled carbon nanotubes/thionine (Th-SWNTs) nanocomposite as a mediator and an enzyme immobilization matrix. The
Liu Deng et al.
Analytical chemistry, 82(10), 4283-4287 (2010-04-21)
In this work we developed a fully integrated biofuel cell on a microchip, which consisted of glucose dehydrogenase supported (carbon nanotubes/thionine/gold nanoparticles)(8) multilayer as the anode, and the (carbon nanotubes/polylysine/laccase)(15) multilayer as the cathode. The as-obtained biofuel cell produced open
Limei Zhu et al.
Biosensors & bioelectronics, 35(1), 507-511 (2012-04-10)
A novel protocol for development of DNA electrochemical biosensor based on thionine-graphene nanocomposite modified gold electrode was presented. The thionine-graphene nanocomposite layer with highly conductive property was characterized by scanning electron microscopy, transmission electron microscopy, cyclic voltammetry and electrochemical impedance
Yanyan Cai et al.
Biosensors & bioelectronics, 36(1), 6-11 (2012-05-09)
Interests in using nanoporous metals for biosensing applications have been increasing. Herein, nanotubular mesoporous PdCu (NM-PdCu) alloy is used to fabricate a novel label-free electrochemical immunosensor for cancer biomarker carcinoembryonic antigen (CEA). It operates through physisorption of anti-CEA on NM-PdCu
Jingman Han et al.
Biosensors & bioelectronics, 47, 243-247 (2013-04-16)
Here we report a one-step approach to synthesize graphene oxide-thionine-Au (GO-Thi-Au) nanocomposites using the synergistic effect of Thi and GO. Thi molecules adsorbed on the nanocomposites still kept the property of electroactive redox. Meanwhile, the resulting Au nanoparticles (AuNPs) of

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service