5(6)-Carboxynaphthofluorescein (CNF) may be used as an intravesicular pH-sensitive probe for the detection of activity, selectivity and cooperativity of ion channels such as gramicidin A.
A fast and durable ratiometric pH microoptode that is highly accurate, precise, sensitive, reversible, and reproducible over the physiological ranges of pH, ionic strength, and temperature has been developed. The sensing site consists of 5 (and 6)-carboxynaphthofluorescein (CNF) entrapped in
Aging population and longer life expectancy are the main reasons for an increasing number of patients with wound problems. Although the interest in wound care increases continuously, wound management still remains a challenge mainly due to the higher occurrence of
Global change biology, 23(9), 3690-3703 (2017-04-09)
Anthropogenic nutrient inputs enhance microbial respiration within many coastal ecosystems, driving concurrent hypoxia and acidification. During photosynthesis, Symbiodinium spp., the microalgal endosymbionts of cnidarians and other marine phyla, produce O
The aim of the present work is to develop an evanescence wave array biosensor exploiting the "kinetic" approach of enzymatic reaction and further detection of the reaction products via pH sensitive fluorophore reporter. To demonstrate the feasibility of this approach
The activity of synthetic pores, ion channels, transporters and carriers is usually determined with fluorescent probes in vesicles or by conductance measurements in planar lipid bilayers. Elaborating on more colorful alternatives, we here introduce 5(6)-carboxynaphthofluorescein (CNF) as an intravesicular pH
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.