Skip to Content
MilliporeSigma
All Photos(1)

Documents

L0399905

Levocarnitine impurity A

European Pharmacopoeia (EP) Reference Standard

Synonym(s):

(E/Z)-4-(Trimethylammonio)but-2-enoate

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C7H13NO2
CAS Number:
Molecular Weight:
143.18
UNSPSC Code:
41116107
NACRES:
NA.24

grade

pharmaceutical primary standard

API family

levocarnitine

manufacturer/tradename

EDQM

application(s)

pharmaceutical (small molecule)

format

neat

InChI

1S/C7H13NO2/c1-8(2,3)6-4-5-7(9)10/h4-5H,6H2,1-3H3/b5-4+

InChI key

GUYHPGUANSLONG-SNAWJCMRSA-N

General description

This product is provided as delivered and specified by the issuing Pharmacopoeia. All information provided in support of this product, including SDS and any product information leaflets have been developed and issued under the Authority of the Issuing Pharmacopoeia. For further information and support please go to the website of the issuing Pharmacopoeia.

Application

Levocarnitine impurity A EP Reference standard, intended for use in laboratory tests only as specifically prescribed in the European Pharmacopoeia.

Packaging

The product is delivered as supplied by the issuing Pharmacopoeia. For the current unit quantity, please visit the EDQM reference substance catalogue.

Other Notes

Sales restrictions may apply.

pictograms

Exclamation mark

signalword

Warning

hcodes

Hazard Classifications

Eye Irrit. 2

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

M R Castellar et al.
Journal of applied microbiology, 85(5), 883-890 (1998-11-27)
L(-)-carnitine was produced from D(+)-carnitine by resting cells of Escherichia coli O44 K74. Oxygen did not inhibit either the carnitine transport system or the enzymes involved in the biotransformation process. Aerobic conditions led to higher product yield than anaerobic conditions.
[Reduction of crotonobetaine and D-carnitine to gamma-butyrobetaine, and the metabolism of L-carnitine in the mouse and rat].
H Seim et al.
Hoppe-Seyler's Zeitschrift fur physiologische Chemie, 361(7), 1059-1067 (1980-07-01)
K Eichler et al.
Molecular microbiology, 13(5), 775-786 (1994-09-01)
The sequence encompassing the cai genes of Escherichia coli, which encode the carnitine pathway, has been determined. Apart from the already identified caiB gene coding for the carnitine dehydratase, five additional open reading frames were identified. They belong to the
J M Obón et al.
Applied microbiology and biotechnology, 51(6), 760-764 (1999-07-28)
The use of a biological procedure for L-carnitine production as an alternative to chemical methods must be accompanied by an efficient and highly productive reaction system. Continuous L-carnitine production from crotonobetaine was studied in a cell-recycle reactor with Escherichia coli
C Engemann et al.
Archives of microbiology, 175(5), 353-359 (2001-06-21)
Two proteins, component I (CI) and component II (CII), catalyze the biotransformation of crotonobetaine to L(-)-carnitine in Proteus sp. CI was purified to electrophoretic homogeneity from cell-free extracts of Proteus sp. The N-terminal amino acid sequence of CI showed high

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service