Skip to Content
MilliporeSigma
All Photos(1)

Documents

H12900

Sigma-Aldrich

cis-3-Hexen-1-ol

98%

Synonym(s):

(3Z)-3-Hexen-1-ol, (Z)-3-Hexen-1-ol, (Z)-Hex-3-en-1-ol, 3Z-Hexen-1-ol, Blaetteralkohol, cis-1-Hydroxy-3-hexene, cis-3-Hexene-1-ol, cis-3-Hexenol

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
C2H5CH=CHCH2CH2OH
CAS Number:
Molecular Weight:
100.16
Beilstein/REAXYS Number:
1719712
EC Number:
MDL number:
UNSPSC Code:
12352100
PubChem Substance ID:
NACRES:
NA.22

vapor density

3.45 (vs air)

Quality Level

assay

98%

form

liquid

color

APHA: ≤100

refractive index

n20/D 1.44 (lit.)

bp

156-157 °C (lit.)

density

0.848 g/mL at 25 °C (lit.)

SMILES string

CC\C=C/CCO

InChI

1S/C6H12O/c1-2-3-4-5-6-7/h3-4,7H,2,5-6H2,1H3/b4-3-

InChI key

UFLHIIWVXFIJGU-ARJAWSKDSA-N

Looking for similar products? Visit Product Comparison Guide

Related Categories

pictograms

Flame

signalword

Warning

hcodes

Hazard Classifications

Flam. Liq. 3

Storage Class

3 - Flammable liquids

wgk_germany

WGK 1

flash_point_f

111.2 °F - closed cup

flash_point_c

44 °C - closed cup

ppe

Eyeshields, Faceshields, Gloves, type ABEK (EN14387) respirator filter


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Damon J Crook et al.
Journal of economic entomology, 105(2), 429-437 (2012-05-23)
Field trapping assays were conducted in 2009 and 2010 throughout western Michigan, to evaluate lures for adult emerald ash borer, A. planipennis Fairmaire (Coleoptera: Buprestidae). Several ash tree volatiles were tested on purple prism traps in 2009, and a dark
Shigehiro Namiki et al.
Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology, 194(5), 501-515 (2008-04-05)
Pheromone-source orientation behavior can be modified by coexisting plant volatiles. Some host plant volatiles enhance the pheromonal responses of olfactory receptor neurons and increase the sensitivity of orientation behavior in the Lepidoptera species. Although many electrophysiological studies have focused on
Andre F Cruz et al.
Phytochemistry, 78, 72-80 (2012-04-24)
Fusarium diseases cause major economic losses in wheat-based crop rotations. Volatile organic compounds (VOC) in wheat and rotation crops, such as chickpea, may negatively impact pathogenic Fusarium. Using the headspace GC-MS method, 16 VOC were found in greenhouse-grown wheat leaves:
L Chen et al.
Bulletin of entomological research, 97(5), 515-522 (2007-10-06)
Parasitoids employ different types of host-related volatile signals for foraging and host-location. Host-related volatile signals can be plant-based, originate from the herbivore host or produced from an interaction between herbivores and their plant host. In order to investigate potential sex-
Tsviya Olender et al.
Chemical senses, 37(7), 581-584 (2012-06-15)
Considerable evidence supports the idea that odorant recognition depends on specific sequence variations in olfactory receptor (OR) proteins. Much of this emerges from in vitro screens in heterogenous expression systems. However, the ultimate proof should arise from measurements of odorant

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service